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1 Introdução

O estudo de reconhecimento de ações utilizando dados visuais (imagens e ví-
deos) sempre esteve ligado a avanços em áreas complementares, como reconhe-
cimento de objetos e dinâmicas de movimento do corpo humano. Na última
década, a análise de ações humanas evoluiu de situações limitadas a ambientes
controlados para soluções avançadas que podem aprender e analisar milhões de
vídeos que representam quase todas as atividades cotidianas [1].

O problema escolhido envolve a detecção de atividades humanas através do uso
de aprendizado de máquina, capaz de identificar padrões em vídeos (sequências de
frames) [2]. Desta maneira, espera-se que um modelo que tenha sido treinado por
uma base de dados com muitos trechos de vídeos distintos seja capaz de analisar
novos vídeos e classificá-los em uma das categorias em que fora treinada, com um
elevado índice de acertos.

Para iniciar o estudo do reconhecimento de ações e atividades, é necessário
definir exatamente do que se tratam estes termos e suas diferenças. Wang Et al.
[3] afirma que ação é toda interação com o ambiente que cause uma mudança
no mesmo. De maneira a tornar esta definição mais abrangente, Chaquet et
al.[4] afirma que ações podem ser consideradas uma sequência de movimentos
que cumprem uma determinada função simples, como correr, pular, chutar uma
bola. Já atividades são compostas por uma sequência de ações ao longo do
espaço e tempo, como pessoas fazendo exercícios físicos ou praticando um esporte
específico. Pode-se dizer que a realização de uma atividade está relacionada ao
conceito de interação: entre pessoas, ou entre pessoas e objetos do ambiente.

De maneira a se aprofundar nesta área, pode-se dividir este campo de estudo
em 3 categorias de problemas distintos [5]: reconhecimento de ações de uma
pessoa; reconhecimento de interações entre duas pessoas ou mais pessoas e reco-
nhecimento de interação humano-objeto, conforme o diagrama na figura 1. Cada
uma destas situações envolvem contextos distintos e requerem o uso de diferentes
abordagens e técnicas a serem utilizadas para reconhecer o acontecimento do ví-
deo analisado. Nas seções a seguir, os métodos utilizados para reconhecimento de
ações e atividades humanas serão brevemente descritos, bem como as categorias
de problemas, suas respectivas sub-seções, e a aplicabilidade dos métodos para
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cada um destes problemas serão brevemente apontados.

Figura 1: Tipos de problemas abordados.

Do ponto de vista mecatrônico e científico, o projeto proposto envolve conceitos
de programação e engenharia elétrica, como visão computacional e aprendizado
de máquina que atualmente estão atraindo cada vez mais atenção por parte do
mundo acadêmico e do mercado de trabalho [6]. Além disso, a detecção de ativi-
dades humanas possui diversas aplicações práticas de grande relevância social. Na
área de assistência a idosos, por exemplo, ela pode identificar e prevenir acidentes
ao identificar situações perigosas em que estes possam se encontrar. Na área de
assistência a bebês, por outro lado, ela pode monitorar o sono da criança, prever
necessidades básicas, como comida e água e, recentemente, existem até pesquisas
para identificação de autismo através de algoritmos de aprendizado de máquina
[7]. Por fim, a detecção de atividades humanas também pode ser aplicada na
área de segurança pública ao auxiliar o monitoramento de atividades suspeitas
ou criminais [8].

2 Métodos de Reconhecimento de Ações Huma-

nas

Há uma vasta gama de técnicas utilizadas para resolver o problema do reconhe-
cimento de atividades humanas. De modo geral, pode-se classificar estes métodos
entre:

• Soluções baseadas em extração de características

• Soluções baseadas em redes neurais profundas
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Figura 2: Taxonomia para métodos de reconhecimento de ação humana. Adap-
tado de [9].

2.1 Métodos baseados em extração de características locais

No domínio espacial, pontos com significativa variação local são frequentemente
chamados de “pontos de interesse” por conterem uma grande quantidade de infor-
mação a respeito da imagem ou objeto em questão. Assim, ao expandir o conceito
de pontos de interesse para o domínio espaço-temporal, temos como resultado,
pontos de interesse espaço temporais (STIPs), que contém informações temporais
(evolução do ponto de interesse ao longo de uma sequência de frames) adicionadas
ao espaço, permitindo assim o reconhecimento de atividades humanas a partir de
extração de características locais espaço-temporais.

Analogamente a técnicas de reconhecimento aplicadas para imagens, o reco-
nhecimento de atividades humanas a partir de vídeos é feita na seguinte ordem:
detecção de ponto de interesse → extração de descritor local → agregação de
descritores locais [10]. Ou seja, uma vez que os STIPs são detectados, descritores
locais extraem a forma e o movimento dos STIPs selecionados para que possa
ser extraído um padrão a partir destes conjuntos e a classificação de dados novos
possa ser feita.

2.2 Métodos baseados em redes neurais profundas

Recentemente, modelos de aprendizado profundo têm sido bastante emprega-
dos em tarefas de classificação de imagens [11]. Eles possuem a vantagem de
realizarem simultaneamente o treinamento do modelo e a extração de caracterís-
ticas, ao contrário dos métodos tradicionais de reconhecimento de padrões [12].
Tal aprendizado de características é feito de forma hierárquica, de tal forma que
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características nos níveis mais altos da hierarquia sejam formadas pela combina-
ção de características de mais baixo nível.

Seguindo a taxonomia da figura 2, duas categorias de redes neurais profundas
amplamente empregadas no reconhecimento de ações humanas são as redes es-
paço temporais, o que inclui a rede CNN 3D [13, 14, 2] e as redes de múltiplas
correntes, cujas arquiteturas, basicamente, consistem de duas redes profundas pa-
ralelas: uma para processar informações espaciais relacionadas à aparência (cor,
formato e identidade) e outra para processar informações temporais relacionadas
ao movimento de objetos e pessoas [15].

2.3 Reconhecimento de ações de uma pessoa

O reconhecimento de ações de uma única pessoa a partir de vídeos pode ser
considerado como a categoria mais simples de ser resolvida, uma vez que geral-
mente há um único objeto que necessita ser detectado, acompanhado e ter seu
movimento analisado [16] para realizar o reconhecimento da ação envolvida, que é
o corpo da pessoa em questão. Nesta categoria de problema, tem-se uma situação
de reconhecimento de ações simples, uma vez que as bases de dados dedicadas
a este tipo de situação consistem em sequências de vídeos classificadas em ações
simples, como caminhando, correndo, parado em pé e caindo ([5]). Tais ações
simples são classificadas como ações de baixo-nível [16], uma vez que estas são
utilizadas como base para detecção de ações mais complexas, envolvendo intera-
ções humanas e com objetos.

Para realizar o treinamento de um algoritmo de aprendizado de máquina para
que ele seja capaz de resolver um determinado problema (por exemplo, reconheci-
mento de atividades de uma pessoa), é necessário ter em mãos uma base com uma
quantidade significativa de dados rotulados de acordo com sua categoria. Para
ações simples realizadas por uma única pessoa, há uma grande disponibilidade
de bases de dados com milhares de videoclipes rotulados de acordo com a ação
que é praticada nele.

Inicialmente, o primeiro desafio na resolução do problema de reconhecimento
de ações para uma única pessoa envolvida consistiam em bases de dados contendo
videoclipes gravados em ambientes controlados, e portanto, não são representa-
tivos de uma situação no mundo real. Estas foram as primeiras bases de dados
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constituídas por vídeos rotulados com ações: Weizmann (2001 e 2005) e KTH
(2004).

As ações simples retratadas em Weizmann são filmadas de um ponto de vista
único e fixado, com um fundo estático e simples. A base KTH adiciona com-
plexidade, variando a roupagem dos indivíduos filmados e a iluminação, porém
permanece pouco verossímil.

Eventualmente, o desafio evoluiu para a necessidade de identificar estas ações
em situações mais complexas, que envolvam locais com iluminação não controlada
(por exemplo o ambiente externo) e com fundos complexos e não estáticos. Para
tal, foram consolidadas bases de dados de vídeo clipes filmados em ambientes
mais verossímeis: CAVIAR (2004), ETISEO (2005), CASIA Action (2007), MSR
Action (2009) e UT-Tower (2010). Adicionalmente, também foram elaboradas
bases de dados com clipes extraídos diretamente da internet: HOLLYWOOD
(2008), UCF Sports (2008), UCF YouTube (2009), UCF50 (2010), Olympic
Sports (2010), HMDB51 (2011), cuja maioria tiveram seus clipes extraídos do
YouTube [4].

2.3.1 Ambientes Controlados

Como foi explicado na seção anterior, os primeiros desafios na área de reco-
nhecimento de ações humanas se davam em ambientes controlados (geralmente
locais internos, com iluminação constante e fundo estático). Algumas das ações
presentes nas bases de dados correspondentes a esta categoria são: correr, andar,
acenar, pular, polichinelos, pular corda, bater palmas.

Ambas as abordagens ilustradas nas seções anteriores possuem bom desempe-
nho nos datasets Weizmann e KTH. Para situações com uma única pessoa, méto-
dos de extração de características baseados em representações locais possuem um
desempenho excelente, com exemplos de trabalhos que atingiram a acurácia de
100% para Weizmann e 96.35% para KTH [17]. Isso se deve ao fato de que estes
métodos são capazes de identificar pontos de interesse nos vídeo clipes com muita
precisão, contanto que não haja movimentação significativa por parte da câmera
ou um fundo complexo não-estático. Representações holísticas utilizando Energia
de movimento (Motion Energy Images) e Histórico de movimento (Motion His-
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tory Images) também atingiram 100% de acurácia na base de dados Weizmann,
pelo mesmo motivo dos métodos de representações locais [18].

2.3.2 Ambientes Reais

Com o avanço e evolução das técnicas existentes para reconhecimento de ati-
vidades humanas, o estudo de identificação dessas atividades em ambientes mais
próximos da realidade (e consequentemente mais complexos) tornou-se alvo de
interesse de muitos pesquisadores da área de aprendizado de máquinas e visão
computacional.

As ações que correspondem a este tipo de problema são semelhantes às da
seção anterior, com o desafio adicional da ocorrência de mudanças no fundo e
na iluminação, além da presença de outras pessoas no mesmo clipe. Como a
maioria das filmagens ocorrem em locais públicos e/ou abertos, há a presença
de algumas ações que envolvem o comportamento humano em sociedade, e que
consequentemente são mais complexas: desmaio, movimentos agressivos, acenar,
apontar, arremessar,

A base de dados CAVIAR, por exemplo, é constituída por clipes filmados em 2
locais distintos [4]: o primeiro conjunto de vídeos corresponde a filmagens feitas
no lobby de entrada do laboratório INRIA, em Grenoble, França; o segundo
conjunto se encontra no corredor de um shopping em Lisboa, Portugal.

Adicionalmente, alguns métodos também são avaliados em cima de bases de
dados constituídas de vídeos retirados da internet, como mencionado na seção
Bases de Dados. Estas bases adicionam mais complexidade ao problema, uma
vez que são clipes registrados por cinegrafistas amadores e contém movimento
de câmera significativo, fundo confuso, mudanças de ponto de vista e escala de
objetos [4].

Pelos motivos citados acima, pode-se esperar que soluções mais complexas de-
vem ser utilizadas para se obter boas acurácias para esse tipo de situação re-
alística, em comparação com ambientes controlados. Métodos de extração de
características baseados em representações locais são comumente utilizados para
estes problemas, possuindo desempenho equivalente ou até superior ao de algu-
mas arquiteturas profundas. Para as bases UCF Sports e UCF50, o estado da
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arte é composto por estes métodos, atingindo acurácias de 88.2% e 94.4% res-
pectivamente ([19], [20]). Uma das principais hipóteses para este desempenho
superior de métodos mais antigos em comparação com redes neurais profundas
para estas bases de dados se baseia na “insuficiência de dados disponíveis” [1].

Outra abordagem bastante utilizada para resolver problemas mais complexos
de reconhecimento de ações humanas envolve a fusão entre métodos de extração
de características locais com arquiteturas de redes neurais profundas. Utilizando-
se esta abordagem, foram obtidos resultados de estado da arte para as bases
HOLLYWOOD e Olympic Sports, com acurácias de 73.7% e 96.6% respectiva-
mente ([21], [22]). Estes resultados oriundos de arquiteturas mistas demonstram
empiricamente que as estruturas aprendidas pelas redes neurais são complemen-
tares às características extraídas por algoritmos de representação local [1].

2.4 Reconhecimento de interações entre múltiplas pessoas

A seção anterior 2.3 analisou pesquisas focadas, principalmente, em atividades
de baixo nível, como pular, correr e acenar a mão. Essencialmente, essas ativi-
dades envolvem um único elemento, sem nenhuma interação entre duas ou mais
pessoas. Porém, desde atividades como um simples aperto de mão até um jogo de
futebol envolvem movimentos de diferentes pessoas. A grande dificuldade, no en-
tanto, é entender que tais interações abrangem muito mais do que simplesmente
analisar as ações de cada pessoa separadamente. Por exemplo, em um jogo de
futebol é uma tarefa muito mais difícil localizar e acompanhar múltiplos elemen-
tos sincronizadamente para assim classificar a atividade como “jogando futebol”,
ao invés de simplesmente, “correndo” [23].

Há ainda outros desafios no reconhecimento de interações a partir de vídeos.
O mais notável é a mudança no ângulo da câmera [23], que afeta como a intera-
ção é observada. Enquanto aplicações como vigilância utiliza câmeras estáticas,
outras como esportes e vídeos gravados a partir de smartphones são gravações
dinâmicas. Idealmente, o reconhecimento da interação deveria ser invariante à
variação do ângulo da câmera. Porém, dependendo do ponto de vista, é possível
que, durante uma interação, partes do corpo de uma pessoa estejam bloqueadas
pelo corpo da outra pessoa. Assim, movimentos fundamentais podem não estar
visíveis, prejudicando o reconhecimento da interação. Em segundo lugar, exis-
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tem as chamadas variações intra-classe [24]. Ou seja, ações dentro da mesma
classe podem ser expressas por diferentes pessoas através do movimento de di-
ferentes partes do corpo. Por exemplo, a interação de cumprimentar uma outra
pessoa pode ser feita através de um aperto de mão ou através do contato entre
as bochechas de duas pessoas. O estudo de interações entre pessoas é ainda mais
desafiador devido à falta de grandes e variadas bases de dados [25]. A maioria
deles têm um escopo bastante limitado, como esportes ou vigilância e não há um
padrão comum entre as classes de interações. Por exemplo, um aperto de mão
pode ser uma classe própria ou parte da classe cumprimento. Além disso, uma
mesma base de dados pode conter tanto atividades de uma única pessoa e, ao
mesmo tempo, interações entre múltiplas pessoas, como é o caso de UCF101 [26],
UCF50 [27], Hollywood2 [28], o que dificulta o teste e a validação de métodos de
reconhecimento de interações.

Analogamente ao problema de reconhecimento de ações com uma única pessoa,
existem dois métodos principais para a classificação de interações a partir de
vídeos:

- Métodos baseados em extração de características locais

- Métodos baseados em modelos profundos

Tais abordagens são usadas para resolver uma ampla gama de problemas e duas
grandes aplicações são o reconhecimento de interações sociais e o reconhecimento
de interações para um sistema de vigilância automático.

2.4.1 Interações sociais

As interações sociais envolvem uma gama muito ampla de atividades, como,
por exemplo, beijar, abraçar e apertar a mão de uma outra pessoa [5]. Analoga-
mente aos métodos da seção 2.3, em geral, as abordagens baseadas em extração
de características locais começam identificando características de baixo nível para
depois reconhecer as atividades de alto nível [25]. Assim, é possível reconhecer
tais interações da mesma forma que o reconhecimento de ações de uma única pes-
soa [29, 30]. Um aperto de mão, por exemplo, pode ser reconhecido pelas ações
simultâneas de duas pessoas como “esticar o braço” e “recuar o braço” [29]. Porém,
o desempenho de tais métodos não é tão bom pelo fato do reconhecimento de tais
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interações envolverem mais do que simplesmente analisar as ações de cada pes-
soa separadamente. É necessário, também, analisar as relações espaço-temporais
entre os diferentes indivíduos envolvidos. Informações como movimentação e po-
sicionamento de cada pessoa e aos seus arredores são essenciais para um bom
resultado e foram largamente empregadas [31, 32, 33, 34, 35]. As pessoas reali-
zando atividades como beijos, abraços e aperto de mão, por exemplo, possuem
alta proximidade física e a orientação das suas cabeças pode fornecer informa-
ções relevantes, visto que durante uma interação, supõe-se que duas pessoas estão
frente a frente [31].

Como mencionado na seção 2.3, a seleção manual das características espaço-
temporais relevantes para o reconhecimento de interações não é uma tarefa trivial.
Portanto, foram desenvolvidas muitas soluções baseadas em modelos profundos.
Para o caso de reconhecimento de interações, também foram implementadas redes
de duas correntes [15, 36, 37], redes espaço-temporais [14, 38] e redes recorren-
tes profundas [39, 40]. Porém, os modelos profundos necessitam de uma grande
quantidade de dados para serem treinados. Apesar das bases de dados focadas
em interações humanas estarem crescendo, a quantidade de dados ainda é rela-
tivamente baixa, dada a complexidade do problema [25]. Uma solução parcial
para isso seria a transferência de aprendizagem [41], visto que usar um modelo
pré treinado reduz o tempo de treinamento e a quantidade de dados necessária
[25].

Considerando que atividades podem ser descritas por diversas modalidades
de características, grande atenção tem sido dada aos métodos multimodais [24],
especialmente aqueles que focam no uso de emoções para o reconhecimento de
atividades. Os estudos na área de computação afetiva, por exemplo, partem do
pressuposto de que somente a informação visual não é suficiente para entender
atividades humanas e, portanto, informação adicional é necessária [42]. Entender
o contexto social e emocional em que duas pessoas se encontram pode ser crucial
para uma interpretação correta da interação. Por exemplo: colocar a mão no
ombro de alguém pode ser facilmente identificado, mas dependendo do contexto,
pode significar consolo ou simplesmente desejo de chamar a atenção da outra pes-
soa [25]. O ato de empurrar uma outra pessoa pode ser um ato de violência ou
simplesmente uma brincadeira amigável entre dois amigos. Assim, diversos auto-
res modelaram a habilidade de uma pessoa de expressar, reconhecer e controlar
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os seus estados afetivos em termos de gestos de mãos, expressões faciais, fala, ati-
vidades cardíacas e respiratórias e gestos dos ombros [43, 44, 45]. Porém, apesar
do futuro aparentar ser promissor, ainda há grandes limitações relacionadas aos
métodos multimodais. A falta de bases de dados adequadas para testar e validar
a eficiência de sistemas multimodais, a dificuldade em relacionar características
de baixo nível extraídas de vídeos com conceitos de alto nível, como emoções, e a
dificuldade em selecionar características relevantes, que muitas vezes são grande-
mente dependentes da aplicação são alguns dos desafios que devem ser superados
no futuro próximo [24].

2.4.2 Interações na área de vigilância

Essencialmente, há três tipos de análise de vídeos de sistemas de vigilância [46].
A análise manual é aquela feita por uma pessoa que deve observar as imagens
das câmeras uma a uma até identificar uma atividade suspeita. Já a análise semi
automática é aquela feita parte por uma pessoa, parte por um sistema automati-
zado. Por fim, a análise automática é aquela feita por um sistema autônomo, onde
a análise, o processamento e a classificação do evento é independente de qualquer
intervenção humana. Dessas, a análise automática é de grande interesse, pois o
monitoramento manual contínuo e simultâneo de vídeos provenientes de diver-
sas câmeras é cansativo e propenso a erros [47]. Além disso, atualmente, áreas
públicas e privadas possuem uma crescente taxa de vigilância, através de câme-
ras instaladas nas mesmas. Ou seja, a alta quantidade de dados em formato de
vídeos faz o aprendizado de máquina uma técnica ainda mais interessante para
automatizar sistemas de vigilância [48].

Uma grande área de pesquisa dentro de sistemas de vigilância é a identificação
automática de atividades suspeitas [47]. Uma atividade suspeita é definida como
qualquer atividade fora do comum que expõe uma pessoa ou um grupo de pessoas
ao perigo em um contexto particular [49]. Considerando tal definição, a vigilância
automática de atividades suspeitas a partir de imagens de vídeo possui diversas
aplicações. Dentro da área de interações, especificamente, algumas delas seriam
a identificação de atos de violência ou crimes e o monitoramento automático de
estudantes que estão fazendo provas [47]. No caso de atividades violentas ou cri-
minosas como vandalismo, roubos e brigas, elas não podem ser interrompidas no
momento de seu início. Porém, um sistema de vigilância inteligente pode reconhe-
cer tal atividade e acionar um alarme para ajudar a entidade de segurança local
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a tomar as medidas necessárias. Já um sistema de monitoramento de estudantes
fazendo provas tem como objetivo identificar atividades suspeitas como movimen-
tos incomuns da cabeça para proibir a cópia, um estudante trocar de lugar com o
outro, o contato entre diferentes estudantes e a troca ilegal de material durante a
prova. As grandes vantagens de tal sistema são detectar as atividades suspeitas,
encorajar a redução delas e reduzir a necessidade de monitoramento manual, que
muitas vezes pode ser cansativo e propenso a erros [50]. Novamente, para tais
problemas, existem soluções baseadas em extração de características locais [51,
52, 53, 50] e baseadas em modelos profundos [54, 55, 56, 57].

2.5 Reconhecimento de interações humano-objeto

Desde atividades básicas como atender o celular até atividades em grupo como
futebol envolvem diferentes objetos que são cruciais para o reconhecimento das
mesmas. Assim, o reconhecimento de objetos e as suas interações com humanos
em uma cena pode auxiliar grandemente na tarefa de reconhecimento de ativi-
dades. Ele envolve entender a cena e o evento, reconhecer os objetos que podem
ser manipulados, analisar os movimentos humanos, e observar o efeito de tais
movimentos nos objetos presentes na cena [58]. Em geral, o reconhecimento de
interações humano-objeto é feito através da detecção do objeto e da pessoa, além
da criação das suas respectivas caixas delimitadoras. Após isso, é feito o reconhe-
cimento da ação humana que é a chave para identificar a interação humano-objeto
em questão [59]. Os resultados de tais etapas são, em geral, agrupadas nas tri-
plas <humano, ação, objeto> de forma bastante sucinta [58, 59, 60]. Um exemplo
disso é a figura 3 em que a interação humano-objeto pode ser expressa pela tripla
<humano, segurar, copo>. Ou a figura 4 que mostra um exemplo de interação
<pessoa, atender celular, celular>.

Figura 3: Exemplo de interação humano-objeto <pessoa, segurar, copo>. Ex-
traído de [60].
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Figura 4: Exemplo de interação humano-objeto <pessoa, atender celular, celu-
lar>. Extraído de [61].

Porém, a interpretação de imagens e vídeos contendo pessoas interagindo com
diferentes objetos pode se tornar uma tarefa bastante complexa. Um desafio na
área, por exemplo, é identificar a interação relacionada a dois objetos que são
aparentemente semelhantes, como mostra a figura 5, que contém um spray na
esquerda e uma garrafa de água na direita. Um outro desafio é identificar inte-
rações cujos objetos possuem trajetória semelhante, como ilustra a figura 5. Por
fim, um desafio ainda maior é distinguir entre interações que envolvem objetos se-
melhantes cujas trajetórias também são semelhantes, como por exemplo, atender
celular e fazer uma ligação, conforme ilustra a figura 6.

As soluções para tais desafios são, analogamente aos mencionados nas seções
2.3 e 2.4, baseados em extração de características locais [58, 62, 63] ou em redes
neurais profundas [64, 59, 65] que são capazes de modelar não somente as relações
espaciais entre humano e objeto, mas também as suas relações temporais.

3 Requisitos

Para definir os requisitos que nortearão o desenvolvimento do sistema a ser
entregue no final deste trabalho de formatura, é necessário especificar o escopo
do problema a ser resolvido. Desta maneira, foi definido que o presente trabalho
irá focar no problema mais simples de reconhecimento de ações de uma pessoa
em ambientes controlados, detalhado na seção 2.3.1.

Portanto, a resolução de situações que envolvam interações entre múltiplas
pessoas - como explicado na seção 2.4 - e interação humano-objeto - visto na
seção 2.5 - não estarão dentro do estudo realizado neste trabalho.
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Figura 5: a) Objetos aparentemente semelhantes (spray na esquerda e garrafa
de água na direita). b) Trajetórias de interações que são semelhantes (atender
celular na esquerda e beber água na direita). Extraído de [58].

Figura 6: Objetos e trajetórias de interações que são semelhantes (atender celular
em cima e fazer ligação embaixo). Extraído de [61].

Para atacar o primeiro problema, o algoritmo a ser utilizado precisaria ser capaz
de detectar todos as pessoas presentes na cena, ser capaz de identificar quais de
fato estão envolvidas em alguma ação relevante e entender a interação entre elas.

Quanto a detecção humano-objeto, a interpretação de sequências de vídeos
contendo pessoas interagindo com diferentes objetos também é uma tarefa com-
plexa. Ela envolve o reconhecimento dos objetos que podem ser manipulados, as
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pessoas presentes na cena, identificação de quais participam ativamente da ação
relevante, análise de seus movimentos e observação do efeito de tais movimentos
nos objetos presentes na cena [58].

Portanto a resolução desta categoria de problemas demandaria conhecimentos
que vão muito além da detecção de ações para uma pessoa. Consideramos que
o entendimento do problema e aplicação de um método que atenda aos requi-
sitos demandados por estes 2 problemas vão além do escopo deste trabalho de
formatura.

Adicionalmente, delimitar a extensão da complexidade do sistema a ser desen-
volvido para atuar apenas em ambientes controlados elimina 3 fatores que difi-
cultam o reconhecimento de ações e o desempenho de algoritmos de aprendizado
de máquina em imagens e vídeos como um todo ([5], [1]). São eles:

• Variações de pontos de vista, ou seja, situações em que a câmera não é
estática e muda seu ângulo de filmagem;

• Mudanças de iluminação e oclusões de objetos de interesse;

• Presença de ruídos no fundo da cena: podem ser pessoas, animais ou objetos
não-estáticos que não sejam objeto de interesse para a detecção da atividade.

3.1 Bases de dados

Se tratando de um problema a ser resolvido por meio de técnicas de aprendizado
de máquina, o primeiro passo é definir qual base de dados será utilizada para
treinar e testar o algoritmo. Esta deve conter uma quantidade suficiente de
vídeos categorizados, contendo apenas ações de uma única pessoa, obtidas em um
ambiente controlado. Na literatura, as bases de dados Weizmann [66] e KTH [67]
foram extensamente utilizadas com o propósito de se estudar o mesmo problema
proposto para este trabalho.

A baseWeizmann é composta por 90 sequências de vídeos de baixa-resolução,com
taxa de 50 frames por segundo e cada frame com dimensão de 180x144 pixels.
Estas sequências demonstram 9 pessoas distintas, cada uma realizando 10 ações.
São elas: andar, correr, trotar, polichinelos, pular para frente, pular e permanecer
no mesmo ponto, pular de lado, acenar com ambas as mãos, acenar com uma mão
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e se curvar. Os vídeos se encontram em formato AVI, e o tamanho total da base
é de 340 MB. Este conjunto de dados é pioneiro no estudo de reconhecimento de
ações, e considerado o mais simples para esta tarefa [4].

A base KTH é composta por 2391 sequências de vídeos, contendo 6 classes
distintas de ações: andar, trotar, correr, boxear, acenar e bater palmas. Tais
ações são realizadas diversas vezes por 25 pessoas em 4 cenários diferentes: am-
bientes externos (s1), ambientes externos com variação de escala (s2), ambientes
externos com variação de vestimentas dos indivíduos filmados (s3) e ambientes
internos (s4). Para todos estes ambientes, o fundo é homogêneo ao longo de uma
sequência, como uma câmera estática que captura vídeos a uma taxa de 25 frames
por segundo. Estas sequências já foram previamente reescalonadas para 160x120
pixels, e na média, duram 4 segundos. Estas sequências são gravadas em um ar-
quivo AVI e são disponibilizadas na internet em formato comprimido, totalizando
1,2 GB. Este conjunto de dados, em relação à base Weizmann, adiciona um certo
grau de complexidade, com o acréscimo de novas classes em conjunto com uma
variação de ambientes e vestimentas.

Estas bases, portanto, são compostas por ações humanas simples em ambientes
relativamente controlados. Desta maneira, entendemos que a implementação de
um algoritmo de aprendizado de máquina (a ser definido e discutido na seção
seguinte) para ser treinado e testado em cima do escopo de ações definidos por
essas bases é um começo natural e adequado no estudo de atividades reconheci-
mento humanas. A relação de ações a serem classificadas pelo algoritmo pode ser
vista na tabela 1.

Em seguida, após obtermos os resultados de treino e teste do algoritmo nas
bases KTH e Weizmann, o objetivo será montar uma base de dados própria,
contendo filmagens dos membros do grupo e conhecidos destes, performando as
ações descritas na tabela 1, buscando analisar e entender a performance de um
algoritmo de aprendizado de máquina, variando as condições dos dados de teste
em relação as encontradas nos dados de treino.

Com o centro deste trabalho de formatura na resolução do problema de de-
tecção de atividades humanas inicialmente a partir das bases KTH e Weizmann,
e em seguida testando em uma base própria, o objetivo será o estudo do re-
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Tabela 1: Tabela com relação de ações presentes nas bases de dados escolhidas

Ações KTH Weizmann

Curvar 7 3

Polichinelo 7 3

Pular para frente 7 3

Pular no lugar 7 3

Correr 3 3

Andar de lado 7 3

Pular com 1 perna 7 3

Andar 3 3

Acenar com 1 mão 7 3

Acenar com 2 mãos 3 3

Correr lentamente (trotar) 3 7

Lutar boxe 3 7

Bater palmas 3 7

Figura 7: Exemplos de frames da base de dados KTH. Extraído de [67].

conhecimento dos movimentos humanos, e como estes movimentos podem ser
classificados em diferentes ações (para este trabalho, limitadas às ações da tabela
1). Desta maneira, iremos deixar de lado informações que envolvam o ambiente,
objetos, outras pessoas e interações entre estas partes, uma vez que o escopo de
classificação envolve apenas ações simples. Portanto, iremos analisar a capaci-
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Figura 8: Exemplos de frames da base de dados Weizmann. Extraído de [66].

dade do algoritmo a ser implementado em aprender a classificar ações apenas por
padrões de movimentação do corpo humano.

3.2 Rede Convolucional Neural 3D

Primeiramente proposta por [13], o método selecionado para resolver o pro-
blema proposto foi a rede neural convolucional 3D (CNN 3D). A CNN 3D é uma
rede espaço temporal que tem como diferencial a habilidade de capturar as de-
pendências espaciais intrínsecas às imagens (dois pixels adjacentes possuem alto
grau de correlação) e as dependências temporais intrínsecas a sequências de fra-
mes (dois frames consecutivos também possuem alto grau de correlação). Ou seja,
ela combina a convolução 2D com informações temporais, visto que redes con-
volucionais 2D conseguem obter informações espaciais de imagens com bastante
eficácia [68].

A diferença entre as operações de convolução 2D e 3D estão ilustradas nas fi-
guras 9 e 10. Uma convolução 2D aplicada em uma imagem ou em um volume
de vídeo vai resultar em uma outra imagem 2D e assim, redes convolucionais tra-
dicionais perdem a informação temporal a cada operação de convolução. Apenas
a convolução 3D preserva a informação temporal da sequência de frames, pois a
convolução 3D aplicada em um volume de vídeo tem como saída um outro volume
de vídeo. Mais especificamente, a convolução 3D é feita através de um filtro 3D
(ou kernel) que percorre as 3 dimensões espaciais e temporal de um cubo que é

19



formado através do empilhamento de diversos frames sequenciais do vídeo [13].
Tal empilhamento de frames sequenciais para a formação do cubo estão melhor
ilustrados nas figuras 10, 11.

Figura 9: a) Convolução 2D aplicada em uma imagem resulta em outra imagem.
b) Convolução aplicada em um volume de vídeo resulta em um outro volume de
vídeo; c) Convolução em um volume de vídeo tem como saída um outro volume
de vídeo. Extraído de [14].

Figura 10: Ilustração de uma convolução 3D. Extraído de [69].

O racional por trás da escolha desta arquitetura se baseia em nosso objetivo
de detectar atividades humanas simples. Desta maneira, buscamos arquiteturas
que obtiveram resultados estado-da-arte em bases de dados contendo este tipo de
ação (as bases KTH e Weizmann que serão usadas neste trabalho são as princi-
pais expoentes). Neste caso, a arquitetura CNN3D apresentada por [13] obteve
resultados expressivos na base KTH, sendo que foi precursor para a elaboração
de redes neurais mais complexas, capazes de analisar ações envolvendo interações
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Figura 11: Ilustração do empilhamento de uma sequência de frames. Extraído de
[70].

entre pessoas e objetos. Estas arquiteturas, porém, necessitam de uma quanti-
dade muito maior de dados para serem treinadas, que não é o caso das bases
contendo ações simples - a base Weizmann possui apenas 90 vídeos, enquanto
a base KTH é composta por 600 vídeos de apenas 15 segundos em média cada.
Concluindo, decidimos que inicialmente, a arquitetura a ser implementada será
conforme à descrita por [13] e, uma vez que esta seja devidamente testada, iremos
montar uma base de dados com vídeos próprios contendo as mesmas ações das
bases usadas para treinar e validar a arquitetura, visando testar a performance da
rede neural com variações nos ângulos de filmagem e nos movimentos realizados.

3.2.1 Pré-processamento

A etapa de pré-processamento dos dados é realizada antes da entrada da rede,
com o intuito de acelerar o treino e teste da arquitetura, reduzindo a quantidade
de informações presentes nos frames que não sejam úteis para o reconhecimento
e classificação das atividades nele performadas. Esta fase consiste em 2 passos:
primeiramente, é utilizado o algoritmo de Modelos Mistos Gaussianos (Gaussian
Mixed Models ou GMM) para subtração do fundo da imagem. Este algoritmo
está presente na biblioteca open-source OpenCV, e seu funcionamento consiste
em modelar cada pixel de um vídeo por meio de conjunto de distribuições Gaus-
sianas, com o intuito de identificar se um dado pixel com uma intensidade RGB
determinada pode ser classificado como pertencente ao fundo ou ao plano frontal.
Desta maneira, é possível isolar o objeto de interesse (em nosso caso, o corpo da
pessoa em movimento) do resto da cena (fundo estático). Para cada frame do
vídeo, este algoritmo retorna uma máscara correspondente ao plano frontal, e a
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partir desta, é extraída uma caixa delimitadora que engloba o objeto de interesse
mantendo apenas a porção do frame necessária para reconhecer a atividade rea-
lizada. Em seguida, buscando reduzir os requisitos de memória do computador,
a resolução dos frames é reduzida. No caso do paper selecionado, para a base
KTH, sua resolução foi de 160x120 para 80x60.

Após a etapa de pré-processamento dos vídeos, os frames são empilhados em
grupos de 9, centrados em torno de cada frame presente no vídeo. A idéia é
que cada pilha de 9 frames seja usada como entrada na arquitetura, onde a
rede irá gerar uma classificação para cada um desses cubos, e a classe final é a
mais frequente (método conhecido por majority voting - ou votação por maioria).
Desta maneira, como pode ser visto na figura 13, a entrada possui dimensão
80x60x9. Em seguida, são aplicados 5 tratamentos distintos para os frames,
gerando 5 canais de informação distintos que serão usados para alimentar a rede
neural, sendo estes: gradientes e fluxo óptico nas direções X e Y, e escala de
cinza. Os canais dos gradientes X, Y e da escala de cinza contêm 9 frames cada
um, enquanto que os fluxos ópticos em X e Y contêm 8 frames na saída para cada
um. Desta maneira, temos um total de 43 frames que irão alimentar a arquitetura
para cada pilha de frames. Uma visão geral e resumida dessa etapa de tratamento
de dados pode ser vista no diagrama da figura 12.

Figura 12: Diagrama resumindo a etapa de tratamento de dados.

3.2.2 Descrição da arquitetura

Como dito na seção anterior, a arquitetura a ser implementada neste trabalho
foi descrita por [13] e consiste em uma rede neural convolucional, composta por
um total de 8 camadas (incluindo a entrada), e seu resumo pode ser visto na
tabela 2.
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Tratando-se da arquitetura, são realizadas 3 convoluções. A primeira (C2) é
feita por 2 filtros distintos com dimensão espacial 9x7 e dimensão temporal 3. A
segunda (C4) é feita por 3 filtros de dimensão espacial 7x7 e dimensão temporal 3.
A última convolução (C6) é feita por filtros 2D de dimensão espacial 6x4, para que
o tamanho dos mapas de características resultante seja 1x1. Cada um dos 23*6
= 138 mapas de características na camada S5 estão conectados aos 128 mapas
da camada C6 por meio destes filtros 2D. Além disso, após cada convolução 3D,
há uma camada de subamostragem composta por filtros de dimensão 3X3, que
realizam um processo chamado max-pooling. Esta etapa é importante para obter
maior invariância e robustez contra ruídos e variações nas imagens, além de gerar
mapas de características com dimensões reduzidas [71]. No caso da arquitetura
proposta, usando um filtro de dimensão 3x3 irá dividir a dimensão horizontal e
vertical dos mapas por 3.

Ao final da arquitetura, os 9 frames de dimensão 80x60 foram reduzidos a
um vetor de características com dimensão 128x1, condensando as informações
de movimentação contidas nos 9 frames. Para realizar a classificação, utiliza-se
uma rede neural totalmente conectada, de maneira que os 128 nós na entrada são
conectados às 6 unidades de saída (correspondendo às 6 classes de ações presentes
na base KTH), operando como um classificador.

Figura 13: Ilustração da arquitetura da rede 3D CNN sugerida por [13].

3.3 Configuração do setup

Para realizar o estudo definido nesta seção, é necessário ter um ambiente de
desenvolvimento, onde o programa contendo o algoritmo de implementação da
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Tabela 2: Arquitetura da CNN 3D proposta por [13]

Camada Forma da Ativação Tamanho da Ativação Número de Parâmetros

Entrada 9 @ 80x60 43.200 0
H1 45 @ 80x60 206.400 0
C2 2x33 @ 72x54 256.608 (9*7*3+1)*2 = 380
S3 2x33 @ 24x18 30.888 0
C4 6x23 @ 18x12 33.120 (7*7*3+1)*3 = 444
S5 6x23 @ 6x4 3.312 0
C6 128 @ 1x1 128 (128*138+1) = 17.665

Saída 6 @ 1x1 10 (128*10+1) = 1281

rede neural convolucional 3D possa ser compilado e executado. Assim, os mode-
los de aprendizado profundo serão desenvolvidos utilizando o TensorFlow que é
uma biblioteca open-source e gratuita desenvolvida pela Google em Python [72].
Adicionalmente, é necessário possuir um espaço para armazenar as bases de dados
KTH e Weizmann e que possa ser acessado pelo código de implementação, que
irá utilizar estas bases para realizar o treinamento e o teste da rede neural. Para
tal, será utilizado o Google Colab, que se trata de um ambiente interativo que
permite escrever códigos em Python e roda inteiramente na nuvem. Desta ma-
neira, é possível armazenar as bases de dados neste mesmo ambiente, que possui
320 GB disponíveis para serem utilizados para cada sessão.

Este ambiente de desenvolvimento também permite o uso de CPUs e GPUs
hospedadas na nuvem por até 12 horas. A GPU disponibiliza até 12 GB de
memória RAM, e a CPU possui um processador de 2.3GHz. Resultados estado
da arte para as bases KTH e Weizmann, usando arquiteturas de redes neurais
convolucionais 3D usaram um setup consistindo em um PC com processador Intel
Core I7 e 8GB de memória RAM [73]. Desta maneira, é possível garantir que as
configurações do Google Colab serão suficientes para a realização deste trabalho.

4 Resultados

Para gerar os resultados desta seção, foram utilizados todos os requisitos lista-
dos na seção 3. Assim, primeiramente será feito o processamento das imagens de
vídeo que é o mesmo para todos experimentos. Após isso, o modelo convolucional
implementado será treinado sobre as diferentes bases de dados (Weizmann, KTH
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e base de dados própria) e para melhorar o desempenho do mesmo, diferentes
hiperparâmetros e técnicas de regularização serão explorados. Por fim, será feita
uma comparação entre o modelo do presente trabalho e do artigo [13], que foi um
dos precursores da rede convolucional 3D.

4.1 Pré-processamento

A etapa de pré processamento foi implementada utilizando a biblioteca OpenCV
e a sua documentação em alto nível está inserida no apêndice dentro do módulo
image_processing.py. Ela segue a estrutura descrita na figura 12 e um exemplo
da etapa de pré processamento aplicada na ação “bend"do dataset Weizmann
contendo os cinco canais de informação é apresentado nas figuras 14, 15, 16, 17,
18 e 19.

Figura 14: Frames originais da ação "bend"do dataset Weizmann. Extraído e
adaptado de [66]

Figura 15: Frames em tons de cinza após scaling e foreground extraction

4.2 Base de dados Weizmann

Inicialmente, foi realizado o treino da arquitetura utilizando os vídeos da base
Weizmann. Para realizar o treinamento, utilizamos a função de otimização de
gradiente descente estocástico (Stochastic Gradient Descent - SGD), a função de
perda definida foi a entropia cruzada categórica e a métrica usada para definir a
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Figura 16: Gradiente na direção X a partir dos frames em tons de cinza

Figura 17: Gradiente na direção Y a partir dos frames em tons de cinza

Figura 18: Fluxo óptico na direção X a partir dos frames em tons de cinza

Figura 19: Fluxo óptico na direção Y a partir dos frames em tons de cinza
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precisão de classificação da rede foi a acurácia (proporção entre acertos e número
de exemplos total).

Uma vez que a base possui 90 vídeos (sendo 9 vídeos para cada uma das 10
classes), decidimos dividir a base entre 80 vídeos para treino e 10 vídeos para
teste (1 vídeo para cada classe). Como pode ser visto na figura 20, obtivemos
uma perda de 0.23 e uma acurácia de treino de 92.6% usando essa configuração,
após 3 épocas (a base de dados foi alimentada para a rede neural 3 vezes) e com
um lote de 32 pilhas de frames (o treino em cada época é feito em partes, dividido
em grupos de 32 pilhas de frames cada). Essas pilhas de frames são os grupos
de 9 frames conforme descrito na seção 3.2.1. Além disso, pode-se considerar
que as acurácias de treino mencionadas neste presente trabalho são referentes aos
empilhamentos de 9 frames classificados corretamente. Ou seja, para a base de
dados Weizmann, 92,6% das pilhas de frames foram classificadas corretamente.

Figura 20: Gráficos das curvas de perda e de acurácia em função do número de
épocas na base Weizmann

Após obter este resultado no treino, fizemos o teste com os 10 vídeos, obtendo
uma acurácia de apenas 60%, ou seja, 6 classes de 10 foram preditas correta-
mente. Concluímos que a base possui um tamanho pequeno para treinar uma
arquitetura de rede neural, o que leva a um sobreajuste nos parâmetros da ar-
quitetura (elevada acurácia de treino em comparação com uma acurácia de teste
reduzida). Adicionalmente, apenas 1 vídeo para cada classe é uma quantidade
muito pequena para se obter uma métrica de acurácia que realmente indique a
capacidade preditiva do algoritmo. Desta maneira, existem algumas alternativas
que podemos utilizar para mitigar a questão da escassez de dados desta base.
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Entre elas, iremos adotar o uso de técnicas de aumento de dados (data augmen-
tation) para gerar novos vídeos a partir dos já existentes; o treinamento usando
validação cruzada também será feito, uma vez que ele permite obter a acurá-
cia para diferentes combinações de dados de treino e teste, nos fornecendo uma
percepção melhor da capacidade de generalização verdadeira da rede.

4.2.1 Data Augmentation para o treino na base Weizmann

Conforme visto na seção 4.2 foi aplicada a técnica de data augmentation para
resolver o problema de overfitting [74]. Inicialmente, foram aplicadas as seguintes
transformações geométricas: inversão horizontal dos frames, inversão vertical dos
frames e rotação em 45 graus dos frames. As figuras 21, 22 e 23 mostram exem-
plos dessas três transformações na ação “bend” do conjunto de dados Weizmann.
Assim, considerando que todos os vídeos sofrerão três transformações, a quanti-
dade de vídeos e de frames para treino irá aumentar em quatro vezes e, portanto,
a técnica tem um grande potencial para solucionar o problema de overfitting.
Essa relação entre o número de frames antes e depois da aplicação da técnica de
data augmentation está expressa na tabela 3.

Figura 21: Frames invertidos horizontalmente da ação “bend” da base de dados
“Weizmann”. Extraído e adaptado de [66]

Figura 22: Frames invertidos verticalmente da ação “bend” da base de dados
“Weizmann”. Extraído e adaptado de [66]
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Figura 23: Frames rotacionados em 45 graus da ação “bend” da base de dados
“Weizmann”. Extraído e adaptado de [66]

Tabela 3: Tabela com número de frames no dataset Weizmann antes e depois da
técnica de data augmentation

Ações Quantidade de frames
Original Data Augmentation

Andar 399 1596
Curvar 378 1512
Correr 164 656
Andar de lado 216 864
Acenar com 1 mão 417 1668
Acenar com 2 mãos 397 1588
Polichinelo 498 1992
Pular no lugar 308 1232
Pular com 1 perna 213 852
Pular para frente 215 860

Na etapa de validação do modelo, os mesmos conjuntos de treino e de teste da
seção 4.2 foram utilizados, ou seja, 80 vídeos para treino e 10 vídeos para teste.
Entretanto, mesmo com o aumento do número de frames, os resultados obtidos
não foram satisfatórios. Após um treino de 15 épocas, a acurácia de treino foi de
72.8%, enquanto que a acurácia de teste foi de apenas 30%. Ou seja, o modelo
conseguiu classificar corretamente apenas 3 vídeos dos 10 de teste. As curvas de
perda e acurácia de teste por época podem ser vistas na figura 24.

Uma possível razão para o desempenho baixo da rede é a discrepância entre os
números de frames por classe, como expressa na tabela 3. A classe "Polichinelo",
por exemplo, possui 1992 frames, três vezes mais do que a classe "Correr"que
possui apenas 656 frames. Portanto, para mitigar tanto a questão da escasse
de dados desta base e o desbalanço entre o número de frames por classe, serão
adicionados vídeos de uma base de dados própria, conforme descrito na seção 4.4.
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Figura 24: Gráficos das curvas de perda e de acurácia em função do número de
épocas na base Weizmann com data augmentation.

4.3 Base de dados KTH

A base KTH é composta por 6 ações distintas, sendo que há um total de 25
pessoas diferentes realizando cada uma dessas atividades em 4 cenários diferentes.
Portanto, ao todo há 600 vídeos nesta base. Seguindo a divisão destes dados em
treino e teste feita por [13], são usados todos os vídeos de 16 pessoas para treinar
a arquitetura (384 vídeos), e os vídeos das 9 pessoas restantes para testar (216
vídeos).

Um grande problema enfrentado durante o treinamento usando essa rede se deu
por conta do preenchimento da memória RAM. O Google Colab possui até 12
gb disponíveis, sendo que o espaço ocupado por todos os frames, adicionados aos
frames pré-processados que compõem os 5 canais de informação acabam neces-
sitando de um armazenamento maior. Para contornar este problema, utilizamos
uma função geradora em Python, no qual as pilhas de frames são alimentadas
como entrada na rede neural em grupos separados, de modo que a memória RAM
não seja sobrecarregada com todos os dados de treino de uma única vez.

Para garantir que a rede neural não tenha problemas de sobreajuste, imple-
mentamos o treinamento de modo que as pilhas de frames oriundas de vídeos de
classes distintas são alimentadas para a arquitetura de maneira aleatória.

Realizando o treino após 40 épocas e usando os mesmos parâmetros utilizados
para o treino da base Weizmann(otimizador SGD, função de perda é a entropia
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cruzada categórica e acurácia como métrica de classificação), obtivemos uma acu-
rácia de 99% de treino, com uma perda de 0,015. Esses dados podem ser vistos
na imagem 25.

Figura 25: Gráficos das curvas de perda e de acurácia em função do número de
épocas na base KTH.

A acurácia de teste obtida com essa rede treinada foi de apenas 42,59%, in-
dicando que ainda há uma melhora considerável para ser feita neste treino. Em
particular, notamos que há uma grande quantidade de frames nos vídeos dessa
base que não possuem qualquer informação de movimento realizada pelos indiví-
duos filmados, ou seja, a câmera capturou apenas o fundo estático. Isto ocorre
nas classes andar, correr e correr lentamente (trotar), onde por vários segundos,
o indivíduo acaba saindo do campo de filmagem da câmera, principalmente para
as 2 últimas classes. Acreditamos que estes frames possam atrapalhar o treina-
mento da rede, uma vez que não estão de fato transmitindo qualquer informação
a respeito do movimento que se deseja classificar. Para demonstrar isso empirica-
mente, analisamos as predições feitas pela rede treinada, e notamos que a acurácia
para essas 3 classes era menor - em torno de 30%, enquanto que as classes de bater
palmas e acenar possuíam melhor desempenho - em torno de 60%.

4.3.1 Alterações na base KTH

Tendo em vista os problemas que enfrentamos com a base KTH descritos na
seção 4.3, realizamos o tratamento de todos os vídeos das classes correr e andar,
cortando cada vídeo e deixando apenas os frames que continham o corpo da
pessoa completamente enquadrado e realizando o movimento descrito pela classe.

31



A edição foi feita utilizando o aplicativo Fotos do Windows. Desta maneira, a
quantidade de vídeos das classes correr e andar aumentaram em 4 vezes, na
medida que cada vídeo original foi cortado e dividido em outros 4 vídeos.

Além disso, após uma análise feita a respeito das 6 classes presentes na base,
concluímos que as classes boxear e correr lentamente (trotar) seriam retiradas
de nossos testes. Para a classe boxear, nossa decisão partiu da conclusão de que
esta ação não possui relevância em ser detectada para fins práticos (vigilância,
monitoramento de multidões). Quanto a classe trotar, concordamos que não há
valor prático em diferenciá-la da classe correr, e decidimos manter apenas a 2ª.

Desta forma, realizamos os testes com esta base usando 4 classes: correr, andar,
acenar e bater palmas. Inicialmente, buscamos equilibrar o número de frames por
classe, de maneira a manter a base de treino balanceada. A tabela 4 mostra a
quantidade média de frames por cada vídeo de cada classe. Portanto, utilizamos
os 400 vídeos da classe correr (4 vezes mais vídeos devido às edições feitas nesta
classe), que possui a menor quantidade de frames disponíveis (12970 frames), e
utlizamos os vídeos das outras classes de maneira que estes tivessem a quantidade
de frames mais próxima possível deste patamar. Ao final, a classe Andar possuía
44 vídeos, Acenar possuía 30 vídeos, e bater palmas possuía 24 vídeos.

Tabela 4: Quantidade média de frames por vídeo para cada classe

Classe Frames por vídeo
Andar 292 frames
Correr 130 frames
Acenar 537 frames

Bater Palmas 431 frames

Usando esta configuração para nossas bases de treino, obtivemos uma acurácia
de 95% de treino e uma perda de 0.14. O treino foi realizado utilizando o SGD
como algoritmo de otimização, por um total de 50 épocas. O resultado dele pode
ser visto na figura 26.

Destrinchando a acurácia na base de teste, notamos que esta varia em grande
escala para cada classe: correr possui uma acurácia muito elevada de 94.53%,
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andar obteve uma boa acurácia de 76.56%, enquanto que acenar possui um ín-
dice de acertos de 45.71%, e bater palmas possui apenas 11.11% de seus vídeos
classificados corretamente.

Figura 26: Gráficos das curvas de perda e de acurácia em função do número de
épocas na base KTH com frames balanceados e editados.

Tabela 5: Acurácia na base de teste

Classe Acurácia de teste
Andar 76.56%
Correr 94.53%
Acenar 45.71%

Bater Palmas 11.11%
Base completa 84.82%

Analisando-se a discrepância nos resultados obtidos para cada classe com esta
configuração, concluímos que o balanceamento deveria ser feito por quantidade
de vídeos, e não de frames. Isso se deve a característica dos vídeos das classes de
acenar e bater palmas: apesar de possuírem uma quantidade de frames conside-
ravelmente maior que as classes de correr e andar, a informação contida nesses
vídeos é repetida - ou seja, os movimentos realizados ao longo do vídeo são muito
repetitivos, ao contrário dos vídeos de correr e andar, que possuem padrões de
movimentos variados ao longo de uma quantidade reduzida de frames. Logo,
consideramos que o correto de fato seria balancear nossas bases de treino e teste
por número de vídeos originais. Desta maneira, usamos os 100 vídeos disponíveis
para as classes de acenar e palmas, e os 400 vídeos para as classes de correr e
andar (que contém a mesma quantidade de informação dos 100 vídeos originais).

33



Após alguns testes, observamos que o melhor resultado foi obtido com o treino
por 50 épocas. Acima disso, a rede ficava sobreajustada e pecava na performance
na base de testes. Desta forma, obtivemos uma acurácia de 95.6% e uma perda
de 0.19. O gráfico do treino pode ser observado na figura 27.

Figura 27: Gráficos das curvas de perda e de acurácia em função do número de
épocas na base KTH com vídeos balanceados e editados.

Com esse modelo treinado, ele obteve uma performance consideravelmente su-
perior na base de treino em comparação com o treino realizado com frames ba-
lanceados. Quanto aos resultados obtidos na base de teste, a acurácia ficou mais
equilibrada entre as 4 classes. Enquanto que o modelo treinado com frames ba-
lanceados possuía acurácia elevada para correr, mediano para andar e pecava
para bater palmas e acenar, o modelo com vídeos balanceados performa muito
bem para andar, correr e bater palmas, e continua com uma performance mediana
porém superior para acenar.

É importante destacar que para calcular as acurácias de cada classe, dividimos a
quantidade de acertos pela quantidade de vídeos. Em contrapartida, para calcular
a acurácia da base, fizemos uma média simples, somando todas as acurácias
e dividindo pelo número de classes, uma vez que se fizéssemos a divisão pela
quantidade de vídeos total, as classes andar e correr teriam um peso 4 vezes
maior que as classes acenar e bater palmas.
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Tabela 6: Acurácia na base de teste

Classe Acurácia de teste
Andar 92.19%
Correr 92.19%
Acenar 60.00%

Bater Palmas 94.29%
Base completa 84.67%

4.4 Base de dados própria

Os vídeos da base de dados própria seguem a mesma estrutura dos vídeos da
base Weizmann e KTH: eles contêm apenas ações de uma única pessoa executadas
em um ambiente controlado. No momento há um total de 560 vídeos com um
tamanho total de 615,8 MB. Eles representam 80 pessoas distintas com cada uma
executando 7 ações diferentes: pular no lugar, acenar com as duas mãos, bater
palmas, andar da direita para a esquerda e da esquerda para a direita e correr da
esquerda para a direita e da direita para a esquerda. Além disso, essas 7 ações
foram classificadas em apenas 5 classes: pular, acenar, bater palmas, andar e
correr. Essa relação entre as ações e suas respectivas classes podem ser vistas na
tabela 7 e alguns exemplos de uma pessoa executando tais ações podem ser vistos
na figura 28.

Tabela 7: Tabela com relação de ações presentes nas bases de dados escolhidas

Ações Classes

Pular no lugar Pular
Acenar com as duas mãos Acenar

Bater palmas Bater palmas
Andar da direita para a esquerda Andar
Andar da esquerda para a direita Andar
Correr da direita para a esquerda Correr
Correr da esquerda para a direita Correr

As ações foram escolhidas de modo a se obter uma quantidade de vídeos o mais
balanceada possivel entre as classes, utilizando-se também as bases Weizmann e
KTH.
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Figura 28: Exemplos das ações acenar, pular, bater palmas, andar e correr da
base de dados própria

4.4.1 Pré processamento

A etapa de pré processamento é a mesma que foi aplicada aos conjuntos de
dados Weizmann e KTH e segue a mesma estrutura descrita na figura 12. Um
exemplo da etapa de pré processamento aplicada na ação “handwaving"do dataset
contendo os cinco canais de informação é apresentado nas figuras 29, 30, 31, 32,
33 e 34.

Figura 29: Frames originais da ação "handwaving"da base de dados própria.
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Figura 30: Frames em tons de cinza após scaling e foreground extraction

Figura 31: Gradiente na direção X a partir dos frames em tons de cinza

Figura 32: Gradiente na direção Y a partir dos frames em tons de cinza

Figura 33: Fluxo óptico na direção X a partir dos frames em tons de cinza

Figura 34: Fluxo óptico na direção Y a partir dos frames em tons de cinza
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4.4.2 Conjuntos de treino e de teste

De início, foi feita a seguinte divisão: 70 pessoas para o conjunto de treino e 10
pessoas para o conjunto de teste. Conforme explicado na seção 4.4, cada pessoa
executa duas ações para as classes andar e correr (da direita para a esquerda
e da esquerda para a direita). Isso implica que as classes pular, acenar e bater
palmas terão 70 vídeos cada uma no conjunto de treino, enquanto que as classes
andar e correr terão 140 vídeos cada uma. Adicionalmente, conforme explicado
no final da seção 4.2.1, o desbalanço no número de frames por classe pode ser
um problema no treinamento da rede. Por isso, também foi feita a contagem de
frames por classe para cada um dos conjuntos. Essas relações entre a quantidade
de vídeos e de frames de cada uma das classes para cada um dos subconjuntos
de dados está expressa na tabela 8.

Tabela 8: Tabela com número de frames no dataset Weizmann antes e depois da
técnica de data augmentation

Classes Quantidade de vídeos - Quantidade de frames
Treino Teste Total

Pular 70 - 9049 10 - 1196 80 - 10245
Acenar 70 - 9872 10 - 1320 80 - 11192
Bater palmas 70 - 10021 10 - 1149 80 - 11170
Andar 140 - 13745 20 - 1713 160 - 15458
Correr 140 - 7430 20 - 860 160 - 8290

4.4.3 Treinamento da rede

A rede foi treinada por um total de 40 épocas atingindo uma acurácia e perda
de treino de 99,78% e 0,0057, respectivamente (vide figura 35). Porém, apesar
dos resultados satisfatórios no treino, observamos que ocorreu overfitting após
a oitava época, pois, segundo a tabela 9, após a oitava época a acurácia no
conjunto de teste se estabilizou. Portanto, será necessário implementar técnicas
de regularização na arquitetura da rede neural para melhorar a capacidade de
generalização da mesma.

4.5 Base de dados final

A base de dados final foi composta combinando os vídeos da base de dados
própria com os vídeos da base de dados KTH e, portanto, ela também contêm
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Figura 35: Curvas de acurácia e de perda após 40 épocas para o treinamento da
rede na base de dados própria

Tabela 9: Acurácia e perda no conjunto de dados de teste utilizando a técnica de
majority voting

Classes 8 épocas 9 épocas 10 épocas 11 épocas 40 épocas
Acenar 20% 20% 20% 40% 40%
Bater palmas 50% 30% 30% 50% 40%
Pular 70% 90% 80% 80% 50%
Andar 65% 75% 75% 75% 65%
Correr 70% 65% 70% 60% 75%
Acurácia geral 59% 60% 60% 63% 58,57%

apenas ações de uma única pessoa executadas em um ambiente controlado. A
tabela 10 mostra a quantidade de vídeos de cada classe para cada uma das bases
de dados.

Tabela 10: Quantidade de vídeos de cada classe para cada dataset

Base de dados KTH Própria Total

Quantidade de
vídeos por classe

Andar 400 160 560
Correr 400 160 560
Pular 0 80 80
Bater Palmas 100 80 180
Acenar 100 80 180
Total 1000 560 1560

Segundo a tabela 10, há uma discrepância significativa entre a quantidade de
vídeos de cada classe. A base KTH, por exemplo, conforme a seção 4.3.1, não
possui nenhum vídeo da classe pular. Além disso, cada vídeo das classes andar
e correr foram processados de forma a gerar 4 vídeos e, por isso, estas possuem
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quatro vezes mais vídeos do que as classes bater palmas e acenar. Já no caso da
base de dados própria, foi explicado na seção 4.4, que as classes correr e andar
possuem duas vezes mais vídeos do que as restantes.

4.5.1 Resultados sem regularização

Inicialmente, a rede foi treinada sem o uso de regularização e utilizamos 64%
dos vídeos para treino e 36% dos vídeos para teste, conforme apresentado na
tabela 11.

Tabela 11: Quantidade de vídeos para treino e teste para cada classe de cada
base de dados

Base de Dados KTH Próprio Total

Quantidade
de vídeos de
treino/teste

Andar 256/144 102/58 358/202
Correr 256/144 102/58 358/202
Pular 0 51/29 51/29
Bater Palmas 64/36 51/29 115/65
Acenar 64/36 51/29 115/65
Total 640/360 357/203 997/563

Treinando a rede com os mesmos parâmetros utilizados para o treino da base
Weizmann e KTH (otimizador SGD, função de ativação ReLU, entropia cruzada
categórica como função de perda, acurácia como métrica de classificação e learning
rate de 0,001) por 40 épocas, obtivemos uma acurácia de treino de 98,73% e as
acurácias de teste mostradas na tabela 12.

Tomando a classe correr como exemplo, uma acurácia de 62,4% significa que
64,2
100
∗ 202 = 126 dos vídeos de teste foram classificados corretamente. Agora,

a média por quantidade de classes de 62,02% consiste apenas em uma média
simples entre as acurácias, ou seja, 0,99+62,4+64,6+60+24,1

5
= 62, 02%. Já a média

por quantidade de vídeos de 73,5% consiste em em uma média ponderada que
dá mais peso às classes andar e correr por terem mais vídeos do que as outras
e reflete de forma acurada a quantidade de vídeos totais que foram classificados
corretamente, que são 73, 5% ∗ 563 = 414 vídeos. Em expressões matemáticas:

0, 99 ∗ 202 + 0, 624 ∗ 202 + 0, 646 ∗ 65 + 0, 6 ∗ 65 + 0, 241 ∗ 29
202 + 202 + 65 + 65 + 29

= 73, 5%
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Tabela 12: Quantidade de vídeos para treino e teste para cada classe de cada
base de dados

Classe Acurácia de teste Quantidade
de vídeos

Vídeos classificados
corretamente

Andar 99% 202 99% * 202 = 200
Correr 62,4% 202 62,4% * 202 = 126
Acenar 64,6% 65 64,6% * 65 = 42
Bater Palmas 60% 65 60% * 65 = 39
Pular 24,1% 29 24,1% * 29 = 7
Média por
quantidade
de classes

62,02% - -

Média por
quantidade
de vídeos

73,5% 563 73,53% * 563 = 414

4.6 Regularização e otimização de hiperparâmetros

Observando os resultados listados na tabela 12, podemos observar que a arqui-
tetura treinada está com um problema de sobreajuste, ou seja, ela está aplicando
um peso muito grande aos ruídos presentes nos dados de treino durante seu apren-
dizado o que reduz a capacidade da rede de generalizar bem para dados nunca
vistos (o que justifica uma grande discrepância entre a elevada acurácia nos dados
de treino e a baixa acurácia nos dados de teste).

Para contornar o problema do sobreajuste, as seções irão focar em otimizar os
hiperparâmetros do modelo e em algumas técnicas de regularização. Para todas
as execuções desta seção, pode-se considerar que o modelo foi treinado por 40
épocas, com exceção da configuração da seção 4.6.6.

4.6.1 Escolha do otimizador

A escolha do otimizador correto para minimizar a função de perda de uma rede
neural é essencial para o bom desempenho da mesma. Portanto, foram testados
os reconhecidos otimizadores Adam (Adaptive Moment Estimation), Adagrad e
Adamax [75]. A configuração da rede e os parâmetros utilizados são os mes-
mos da seção anterior 4.5.1 e a tabela 13 mostra os resultados obtidos para cada
um dos otimizadores. Segundo a tabela, pode-se verificar que o otimizador Ada-
max obteve o melhor desempenho, mas que houve um overfitting significativo,
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considerando as acurácias de treino e de teste. Portanto, nas próximas seções
serão explorados diferentes valores de hiperparâmetros e diferentes métodos de
regularização sempre utilizando o otimizador Adamax.

Tabela 13: Comparação de diferentes otimizadores para treino de 40 épocas

Otimizador Acurácia - Treino Acurácia - Teste

SGD 98,73%

Andar: 99%
Correr: 62,4%
Acenar: 64,6%
Palmas: 60%
Pular: 24,1%
Média por quantidade
de classes: 62,02%
Média por quantidade
de vídeos: 73,53%

Adam 98,86%

Andar: 100%
Correr: 77,72%
Acenar: 80%
Palmas: 67,69%
Pular: 37,93%
Média por quantidade
de classes: 73,07%
Média por quantidade
de vídeos: 82,77%

Adagrad 92,85%

Andar: 96,95%
Correr: 73,17%
Acenar: 80,43%
Palmas: 58,7%
Pular: 50%
Média por quantidade
de classes: 71,85%
Média por quantidade
de vídeos: 80,93%

Adamax 99,47%

Andar: 96,43%
Correr: 92,86%
Acenar: 91,67%
Palmas: 47,22%
Pular: 56,25%
Média por quantidade
de classes: 76,88%
Média por quantidade
de vídeos: 86,86%
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4.6.2 Escolha do Learning Rate inicial

Um dos hiperparâmetros de suma importância para o bom desempenho de
uma rede neural é o learning rate inicial. Segundo [76], valores típicos deste
parâmetro se encontram no intervalo [10−6, 1]. Portanto, foram testados os valores
{0, 00025; 0, 0005; 0, 00075; 0, 000875; 0, 001} novamente para 40 épocas, conforme
mostra a tabela 14, e foi concluído que o learning rate de 0,001 seria o mais
adequado para o treinamento da rede neural.

4.6.3 Escolha da função de ativação

Para atingir resultados do estado da arte, é essencial a escolha de uma boa
função de ativação. Portanto esta seção é dedicada à exploração de diferentes
funções de ativação. Até o presente momento, foi usada apenas a função de
ativação ReLU (Rectified Linear Unit), mas outras alternativas como om PReLU,
ELU, Leaky ReLU e SELU serão exploradas nesta seção [77]. Conforme a tabela
15, os resultados obtidos pelas diferentes funções de ativação são bem parecidos,
porém não melhores que os resultados obtidos na seção anterior com o uso do
ReLU. Portanto, a função de ativação ReLU continuará a ser adotada para os
próximos testes.

4.6.4 Escolha da taxa de Dropout

Uma técnica muito comum de regularização é a técnica de dropout. Ela consiste
consiste em zerar aleatoriamente alguns dos valores de entrada nas camadas da
rede neural, o que contribui para tornar a rede mais robusta a variações nos dados
de entrada e previne a ocorrência do sobreajuste [78].

Segundo [78], valores ótimos da taxa de dropout variam entre 0 e 50%. Para
o caso da nossa arquitetura, as camadas de dropout foram adicionadas após as
camadas convolucionais e, portanto, foram testados diferentes combinações de
taxas de dropout para as três camadas convolucionais presente no modelo, con-
forme a tabela 16. A partir desta, pode-se concluir que as taxas de dropout de
15% nas três camadas convolucionais trouxe o melhor desempenho e, portanto,
serão usadas para os próximos testes.

43



Tabela 14: Comparação do desempenho de modelos com otimizador Adamax
treinados por 40 épocas testando diferentes learning rates

Learning Rate Acurácia - Treino Acurácia - Teste

0,00025 98,4%

Andar: 100%
Correr: 67,3%
Acenar: 70,8%
Palmas: 81,5%
Pular: 6,9%
Média por quant. de classes: 65,3%
Média por quant. de vídeos: 78%

0,0005 99,53%

Andar: 99,5%
Correr: 73,3%
Acenar: 78,5%
Palmas: 75,4%
Pular: 24,1%
Média por quant. de classes: 70,2%
Média por quant. de vídeos: 81%

0,00075 86,33%

Andar: 0%
Correr: 0%
Acenar: 0%
Palmas: 100%
Pular: 0%
Média por quant. de classes: 20%
Média por quant. de vídeos: 11,6%

0,000875 99,77%

Andar: 99,5%
Correr: 71,78%
Acenar: 76,92%
Palmas: 81,54%
Pular: 44,83%
Média por quant. de classes: 74,91%
Média por quant. de vídeos: 82,06%

0,001 99,47%

Andar: 96,4%
Correr: 92,9%
Acenar: 91,7%
Palmas: 47,2%
Pular: 56,3%
Média por quant. de classes: 76,9%
Média por quant. de vídeos: 86,9%

4.6.5 Base de treino, teste e de validação

A próxima subseção focará no uso das técnicas de regularização de Learning
Rate Decay e de Early Stopping. Para implementá-las de forma eficiente, é ne-
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Tabela 15: Comparação do desempenho de modelos com otimizador Adamax e
Learning Rate inicial de 0,001 treinados por 40 épocas testando diferentes funções
de ativação

Função de ativação Acurácia - Treino Acurácia - Teste

ELU 94,32%

Andar: 98,21%
Correr: 74,11%
Acenar: 63,89%
Palmas: 80,56%
Pular: 12,5%
Média por quant. de classes: 65,9%
Média por quant. de vídeos: 79,2%

SELU 99,57%

Andar: 99%
Correr: 72,8%
Acenar: 73,9%
Palmas: 60%
Pular: 31%
Média por quant. de classes: 67,3%
Média por quant. de vídeos: 78,7%

PReLU 99,61%

Andar: 99,5%
Correr: 73,27%
Acenar: 70,77%
Palmas: 70,77%
Pular: 27,59%
Média por quant. de classes: 68,4%
Média por quant. de vídeos: 79,8%

Leaky ReLU 99,4%

Andar: 100%
Correr: 71,3%
Acenar: 73,9%
Palmas: 83,1%
Pular: 24,1%
Média por quant. de classes: 70,5%
Média por quant. de vídeos: 80,8%

cessário dividir a base de dados de outra forma, que inclui uma base de dados de
validação, além da base de treino e teste. A proporção escolhida foi de 60%, 20%
e 20% dos vídeos totais, respectivamente, para as bases de dados de treino, teste
e validação. Tal divisão está expressa na tabela 17.

4.6.6 Learning Rate Decay e Early Stopping

Empiricamente, a técnica de Learning Rate Decay traz grandes benefícios à
otimização e à generalização de uma rede neural. Ela técnica consiste em redu-
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Tabela 16: Comparação do desempenho de modelos com otimizador Adamax,
Learning Rate inicial de 0,001 e função de ativação ReLU treinados por 40 épocas
testando diferentes taxas de dropout

Taxa de Dropout
em cada camada
convolucional

Acurácia - Treino Acurácia - Teste

15% - 15% - 15% 99,66%

Andar: 99,5%
Correr: 75,7%
Acenar: 81,5%
Palmas: 80%
Pular: 75,9%
Média por quant. de classes: 82,5%
Média por quant. de vídeos: 85,4%

25% - 25% - 25% 99,59%

Andar: 100%
Correr: 72,3%
Acenar: 86,2%
Palmas: 78,5%
Pular: 44,8%
Média por quant. de classes: 76,3%
Média por quant. de vídeos: 83,1%

25% - 50% - 25% 98,4%

Andar: 100%
Correr: 73,3%
Acenar: 72,3%
Palmas: 78,5%
Pular: 31%
Média por quant. de classes: 71%
Média por quant. de vídeos: 81,2%

37,5%-37,5%-37,5% 98,09%

Andar: 100%
Correr: 71,8%
Acenar: 66,2%
Palmas: 84,6%
Pular: 37,9%
Média por quant. de classes: 72,1%
Média por quant. de vídeos: 81%

37,5%-37,5%-50% 98,23%

Andar: 100%
Correr: 69,8%
Acenar: 70,8%
Palmas: 89,2%
Pular: 31%
Média por quant. de classes: 72,2%
Média por quant. de vídeos: 81%
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Tabela 17: Quantidade de vídeos de cada classe para base de treino, teste e
validação

Dataset KTH Próprio Total

Quantidade
de vídeos de
treino/teste/
validação

Andar 240/80/80 96/32/32 336/112/112
Correr 240/80/80 96/32/32 336/112/112
Pular 0 48/16/16 48/16/16
Bater Palmas 60/20/20 48/16/16 108/36/36
Acenar 60/20/20 48/16/16 108/36/36
Total 600/200/200 336/112/112 936/312/312

zir o learning rate quando certas condições são satisfeitas [79]. Ainda segundo
[79], acredita-se que tal técnica previne o modelo de memorizar ruídos e ajuda o
mesmo a aprender padrões complexos. Portanto, para a arquitetura proposta, foi
implementado um learning rate decay que reduz o learning rate a 20% do valor
anterior sempre que a perda de validação não diminuir após cinco épocas por um
valor mínimo de 0,01.

Adicionalmente ao Learning Rate Decay, pode-se usar a técnica de Early Stop-
ping. O funcionamento dessa técnica é bem descrito na figura 36 e ela previne
o sobreajuste parando o treinamento da rede quando a acurácia da base de da-
dos de validação deixa de aumentar [80]. Portanto, foi implementado um Early
Stopping que para o treinamento da rede caso a perda de validação não diminuir
após oito épocas por um valor mínimo de 0,01.

Figura 36: Funcionamento da técnica early stopping. Extraído de [81].
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Os resultados obtidos estão mostrados na tabela 18. Segundo esta, há redução
no learning rate após a época 15, pois não houve redução da perda de validação
das épocas 11 a 15. Além disso, pode-se observar também que houve a ocorrência
do Early Stopping após a época 18, visto que não houve redução na perda de
validação por 8 épocas (da época 11 à época 18). Comparação do desempenho
de modelos com otimizador Adamax, Learning Rate inicial de 0,001 e função de
ativação ReLU treinados por 40 épocas testando diferentes taxas de dropout

Tabela 18: Acurácia e perda do modelo com otimizador Adamax, Learning Rate
inicial de 0,001, função de ativação ReLU e camadas com Dropout de 15% para
as bases de dados de treino e validação utilizando as técnicas de Learning Rate
Decay e Early Stopping.

Época Treino
Acurácia - Perda

Validação
Acurácia - Perda Learning Rate

1 38,6% - 1,17 53,8% - 0,865 0,001
2 58,7% - 0,81 63,1% - 0,725 0,001
3 68,3% - 0,66 69,3% - 0,65 0,001
4 76,7% - 0,53 76,8% - 0,5 0,001
5 80% - 0,45 80,1% - 0,44 0,001
6 84% - 0,39 79,9% - 0,489 0,001
7 86% - 0,33 84% - 0,37 0,001
8 89,2% - 0,27 85,4% - 0,4 0,001
9 89,3% - 0,27 84,4% - 0,374 0,001
10 92,1% - 0,2 87,2% - 0,341 0,001
11 93,3% - 0,16 84,3% - 0,39 0,001
12 94,1% - 0,15 88,5% - 0,337 0,001
13 95,2% - 0,126 85,8% - 0,468 0,001
14 96,1% - 0,104 88,3% - 0,346 0,001
15 96,4% - 0,097 88,9% - 0,385 0,001
16 98,3% - 0,05 88,8% - 0,413 0,0002
17 98,5% - 0,044 88,9% - 0,407 0,0002
18 98,6% - 0,04 89,2% - 0,417 0,0002

Por fim, utilizando a técnica de majority voting, o modelo conseguiu atingir as
acurácias de teste descritas na tabela 19.

4.6.7 Tempo de execução

Utilizando a divisão de treino e de teste especificada na seção 4.5.1, foi obser-
vado que, utilizando a CPU do Google Colab, cada época de treino levava em
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Tabela 19: Acurácias de teste do modelo com as técnicas de Learning Rate Decay
e Early Stopping.

Classe Acurácia de teste
Andar 98,21%
Correr 93,75%
Acenar 88,89%
Bater Palmas 77,78%
Pular 93,75%
Acurácia média por quant. de classes 90,48%
Acurácia média por quant. de vídeos 92,95%

torno de 2 horas e 45 minutos. Ou seja, para rodar as 40 épocas, o programa
levaria aproximadamente 111 horas e 50 minutos para terminar a execução. Mas
utilizando a GPU, a duração de cada época de treino reduziu drasticamente para
aproximadamente 13 minutos. Ou seja, o treino completo de 40 épocas levava em
torno de 8 horas e 50 minutos.

4.7 Análise dos resultados

Conforme a seção 4.5, a arquitetura proposta partiu de uma acurácia de teste
por quantidade de classes e por quantidade de vídeos relativamente baixas de,
respectivamente, 62,02% e 73,5%. Porém, após a otimização dos hiperparâmetros
e a implementação de técnicas de regularização tais acurácias saltaram para,
respectivamente, 90,48% e 92,95%. A tabela 20 resume os ganhos trazidos por
cada etapa de melhoria da seção 4.5.

Uma observação importante a se fazer é o aumento drástico na acurácia de teste
da classe pular. Isso se deve ao fato de que, conforme a tabela 10, há poucos vídeos
desta classe. A classe pular tem, exatamente, 7 vezes menos observações que as
classes andar e correr e 2,25 vezes menos observações que as classes bater palmas e
acenar. Portanto, é razoável pensar que nas primeiras duas configurações (inicial
e com a adição do otimizador Adamax), ocorre overfitting do modelo nas classes
com mais observações e, por isso, as acurácias da classe pular são bem baixas
(24,1% e 56,25%). Tal argumento é ainda mais reforçado tendo em vista as
melhorias causadas pelo uso das técnicas de dropout, learning rate decay e early
stopping, visto que, através delas, a acurácia salta para um patamar de 93,75%.
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Tabela 20: Acurácias de testes após cada etapa de otimização de hiperparâmetros
e regularização

Configuração Acurácia de teste

Inicial

Andar: 99%
Correr: 62,4%
Acenar: 64,6%
Palmas: 60%
Pular: 24,1%
Média por quant. de classes: 62,02%
Média por quant. de vídeos: 73,53%

Otimizador: Adamax

Andar: 96,43%
Correr: 92,86%
Acenar: 91,67%
Palmas: 47,22%
Pular: 56,25%
Média por quant. de classes: 76,88%
Média por quant. de vídeos: 86,86%

Dropout 15% - 15% - 15%

Andar: 99,5%
Correr: 75,7%
Acenar: 81,5%
Palmas: 80%
Pular: 75,9%
Média por quant. de classes: 82,5%
Média por quant. de vídeos: 85,4%

Learning Rate Decay/
Early Stopping

Andar: 98,21%
Correr: 93,75%
Acenar: 88,89%
Palmas: 77,78%
Pular: 93,75%
Média por quant. de classes: 90,48%
Média por quant. de vídeos: 92,95%

4.8 Comparativo com o artigo original

Esta seção fará uma comparação entre os resultados obtidos por este trabalho,
e o artigo no qual nos baseamos para implementar a arquitetura da rede neural
convolucional 3D [13].

Observando a tabela 21, o modelo desenvolvido na seção 4.3, sem o uso de
qualquer técnica de regularização, apresentou um resultado superior ao do artigo
original nas classes de bater palmas e correr e inferior nas classes andar e ace-
nar. A melhora no desempenho da classe correr (92.19% contra 79%) se deve ao
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Tabela 21: Comparativo de acurácia entre o artigo original e o presente trabalho,
utilizando a técnica de majority voting sobre os dados da base KTH.

Classes Sem Regularização Com Regularização Artigo original
Acenar 60% 95% 94%
Bater palmas 94,29% 85% 90%
Andar 92,19% 97,5% 97%
Correr 92,19% 96,25% 79%
Acurácia geral 84,67% 93,44% 90%

trabalho feito para editar os vídeos, removendo os frames que não adicionavam
qualquer informação sobre a ação (procedimento descrito na seção 4.3.1) - isto
auxilia no treinamento da rede neural. Os vídeos da classe andar também tiveram
seus frames "vazios"removidos, porém a acurácia de teste em nosso trabalho aca-
bou ficando um pouco pior do que o artigo original (92.19% contra 97%), uma vez
que seus vídeos possuíam uma menor quantidade de frames a serem removidos em
comparação com a classe correr, e desta maneira, a remoção destes frames não foi
relevante para melhorar a acurácia de teste desta classe. Para a classe bater pal-
mas, a acurácia no modelo sem regularização foi levemente superior ao do artigo
original (94.29% contra 90%). Na classe acenar, o desempenho foi consideravel-
mente pior. Analisando o comportamento da arquitetura mais detalhadamente,
notamos que as predições feitas em cima de uma grande quantidade dos frames
desta classe foram atribuídas a ação de bater palmas, o que indica que há um
sobreajuste presente na rede neural, uma vez que o desempenho da arquitetura
na base de treino foi excelente para todas as ações (95,6% de acurácia).

De maneira a entender o impacto que o uso da regularização possui na perfor-
mance da rede neural nos dados de teste, foi realizado o treinamento desta rede
neural convolucional 3D usando as mesmas técnicas de regularização descritas nas
seções 4.6.4 e 4.6.6. Desta forma, foram inseridas as camadas de dropout antes
de cada camada convolucional da arquitetura com uma taxa de 0.15, e a base de
dados utilizada foi a KTH com as mesmas 4 classes: andar, correr, bater palmas
e acenar (com 400, 400, 100 e 100 vídeos para cada classe, respectivamente). Os
pesos aplicados para a divisão dos vídeos nas bases de treino, validação e teste
foram de 60%, 20% e 20% respectivamente e aplicados igualmente para cada uma
das 4 classes.
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Conforme a tabela 21, houve uma melhora drástica no desempenho da rede
após a adição de regularização. Comparando com o modelo sem regularização,
as classes acenar (60% para 95%), andar (92,19% para 97,5%) e correr (92,19%
para 96,25%) tiveram um aumento nas acurácias. Porém a inclusão das técnicas
de regularização acabaram deteriorando a acurácia na classe bater palmas (de
94,29% para 85%), por mais que a acurácia ainda seja alta.

Comparando com o artigo original[13], o modelo com regularização desenvol-
vido por este trabalho foi superior em todas as classes, com exceção da classe
bater palmas e também obteve uma acurácia geral superior. Acreditamos que
isso se deve ao fato de que os autores do artigo original não exploraram de forma
suficiente diferentes técnicas de regularização e otimização de hiperparâmetros,
como foi feito na seção 4.5.

5 Conclusão

O projeto proposto se baseia na construção de um modelo baseado em aprendi-
zado de máquina para ser treinado sobre um conjunto de dados contendo vídeos
de diversas pessoas executando ações cotidianas.

Após uma extensa pesquisa bibliográfica no campo de reconhecimento de ati-
vidades humanas, pudemos conhecer e entender quais são as categorias de pro-
blemas a serem resolvidas dentro deste escopo, e as técnicas adequadas para cada
tipo de ação. Embasados por esta pesquisa, optamos pelo problema de detecção
de atividades realizadas por uma única pessoa, e o modelo que escolhemos é a
rede neural convolucional 3D, capaz de realizar a operação de convolução em 3
dimensões (2 dimensões espaciais e a temporal).

Após realizar a implementação de todo o pipeline de pré-processamento de
dados e da arquitetura da rede neural, realizamos o treinamento da rede em cima
de bases de dados abertas obtidas na internet. Enfrentamos alguns problemas com
respeito a esses dados, descritos na seção 4. Após realizar alguns tratamentos nos
vídeos, especialmente na base KTH, conseguimos chegar a acurácias satisfatórias,
atingindo um índice de acertos de 85% com os dados de teste. Além disso,
pudemos confirmar a importância da regularização em um modelo de aprendizado
profundo, visto que o resultado final foi de 93% após a implementação de técnicas
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como o dropout e o early stopping, sendo até mesmo superior à acurácia obtida
pelo artigo [13], no qual foi baseado o modelo do presente trabalho.

De modo a validar o modelo, adquirimos 560 vídeos de cunho próprio e mon-
tamos uma outra base de dados misturando estes vídeos com os vídeos da base
KTH. Inicialmente, o modelo não mostrou um desempenho muito bom, obtendo
acurácias de teste por quantidade de classes e por quantidade de vídeos de, respec-
tivamente, 62,02% e 73,53%. Porém após uma extensa exploração de hiperparâ-
metros e técnicas de regularização, tais acurácias saltaram para valores bastante
satisfatórios de, respectivamente, 90,48% e 92,95%. Esses resultados mostram que
o modelo final é bastante robusto ao problema de desbalanceamento de classes,
visto que algumas classes tinham muito menos vídeos do que outras, e demons-
tram a eficácia do modelo convolucional em 3 dimensões no reconhecimento de
dados em formato de vídeo.

Por fim, realizamos a comparação entre os resultados obtidos pelo presente
trabalho e no artigo original. Concluímos que a edição dos vídeos da classe correr,
retirando os frames “vazios” teve um impacto muito positivo na performance da
arquitetura para esta categoria, o que reforça a importância de se usar dados de
qualidade para realizar o treino de uma rede neural. Adicionalmente, o uso de
técnicas de regularização mostrou ter um impacto muito positivo no desempenho
da rede nas acurácias de teste. Estes 2 fatores explicam a melhora obtida nas
acurácias por este presente trabalho, em comparação com o artigo original [13].
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Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all namespaces with brief descriptions:

image_processing
Implementa funções de processamento de imagens . . . . . . . . . . . . . . . . . . . . . . . 5

utils
Implementa funções de uso geral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

src/image_processing/image_processing.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
src/utils/utils.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Chapter 3

Namespace Documentation

3.1 image_processing Namespace Reference

Implementa funções de processamento de imagens.

Functions

• def count_frames (video_cap)

Conta a quantidade de frames de um video.

• def show_frames (video_cap)

Mostra o conteúdo de um conjunto de frames ao usuário.

• def stack_frames (frames_list, frames_per_stack)

Agrupa os frames de um vídeo em listas que contém uma quantidade de "frames_per_stack" de frames.

• def scaling (frames_list, scale)

Essa função realiza reduz a escala dos frames por um fator determinado.

• def redim_weizmann (weiz_frames_list)

Essa função redimensiona os frames da base Weizmann, para que possua uma proporção altura/largura = 1.33,
igual aos frames da base KTH.

• def video2list (video_cap)

Essa função converte um objeto de vídeo para uma lista de frames.

• def foreground_extraction (frames_list, lr, thr, hist_len)

Essa função realiza a extração do plano frontal de um vídeo, e retorna uma lista de imagens correspondendo ao
frames do mesmo.

• def grayscale (frames_list)

Esta função recebe uma lista de frames e retorna uma lista contendo os frames em tons de cinza.

• def compute_gradient (frames_list)

Esta função recebe uma lista com frames e retorna uma lista contendo os frames com seus gradientes na direção X
e Y.

• def optical_flow (frames_list)

Esta função recebe uma lista com frames empilhados e retorna lista contendo os frames com seus fluxos ópticos na
direção X e Y.



6 Namespace Documentation

3.1.1 Detailed Description

Implementa funções de processamento de imagens.

Author

Daniel Kim & Igor Nakamura

Date

Date: 2020-04-17

3.1.2 Function Documentation

3.1.2.1 count_frames()

def image_processing.count_frames (

video_cap )

Conta a quantidade de frames de um video.

Parameters

video_cap objeto VideoCapture

Returns

num_frames: inteiro contendo a quantidade de frames

Examples

count_frames(video_cap)

Definition at line 38 of file image_processing.py.

3.1.2.2 show_frames()

def image_processing.show_frames (

video_cap )

Mostra o conteúdo de um conjunto de frames ao usuário.

Generated by Doxygen



3.1 image_processing Namespace Reference 7

Parameters

video_cap objeto VideoCapture

Returns

None

Examples

>>> show_frames(video_cap)

Definition at line 60 of file image_processing.py.

3.1.2.3 stack_frames()

def image_processing.stack_frames (

frames_list,

frames_per_stack )

Agrupa os frames de um vídeo em listas que contém uma quantidade de "frames_per_stack" de frames.

Parameters

frames_list lista contendo uma sequência de frames

frames_per_stack quantidade de frames por lista

Returns

stacked_frames_list: lista de listas de imagens, correspondendo aos frames de um vídeo

Examples

>>> stack_frames(frames_list, 9)

Definition at line 95 of file image_processing.py.

3.1.2.4 scaling()

def image_processing.scaling (

frames_list,

scale )

Essa função realiza reduz a escala dos frames por um fator determinado.
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8 Namespace Documentation

Parameters

frames_list lista contendo uma sequência de frames

scale inteiro que indica a escala a ser aplicada no redimensionamento dos frames. Ex: 2, para escalar
a imagem para a metade do tamanho original

Returns

updated_list: uma lista de imagens, com os frames na escala especificada

Examples

>>> scaling(frames_list, 2)

Definition at line 125 of file image_processing.py.

3.1.2.5 redim_weizmann()

def image_processing.redim_weizmann (

weiz_frames_list )

Essa função redimensiona os frames da base Weizmann, para que possua uma proporção altura/largura = 1.33,
igual aos frames da base KTH.

Parameters

weiz_frames_list lista de frames de um vídeo da base Weizmann

Returns

weiz_frames_list: uma lista de imagens, com os frames da base Weizmann com formato (135, 180, 3)

Examples

>>> redim_weizmann(weiz_frames_list)

Definition at line 154 of file image_processing.py.

3.1.2.6 video2list()

def image_processing.video2list (

video_cap )

Essa função converte um objeto de vídeo para uma lista de frames.
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3.1 image_processing Namespace Reference 9

Parameters

video_cap sequência de frames de um vídeo

Returns

frames_list: lista contendo os frames do vídeo

Examples

>>> video2list(video_cap)

Definition at line 178 of file image_processing.py.

3.1.2.7 foreground_extraction()

def image_processing.foreground_extraction (

frames_list,

lr,

thr,

hist_len )

Essa função realiza a extração do plano frontal de um vídeo, e retorna uma lista de imagens correspondendo ao
frames do mesmo.

Parameters

frames_list lista contendo uma sequência de frames

lr um número decimal que representa a taxa de aprendizado do algoritmo de subtração

thr um número inteiro que representa o limiar para definir a distância máxima ao qual um pixel ainda
é considerado como pertencente ao fundo

hist_len um número inteiro que representa o histórico de frames considerados para o background model

Returns

updated_list: uma lista de imagens, contendo os frames com o plano frontal extraído

Examples

>>> foreground_extraction(video_cap, lr = 0.85, thr = 24, hist_len = 15)

Definition at line 212 of file image_processing.py.

3.1.2.8 grayscale()

def image_processing.grayscale (

frames_list )

Esta função recebe uma lista de frames e retorna uma lista contendo os frames em tons de cinza.
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10 Namespace Documentation

Parameters

frames_list lista contendo uma sequência de frames

Returns

frames_grayscale: uma lista de imagens, com os frames em escalas de cinza

Examples

>>> grayscale(frames_list)

Definition at line 261 of file image_processing.py.

3.1.2.9 compute_gradient()

def image_processing.compute_gradient (

frames_list )

Esta função recebe uma lista com frames e retorna uma lista contendo os frames com seus gradientes na direção
X e Y.

Parameters

frames_list lista contendo uma sequência de frames

Multiple return:

Parameters

gradient_x_list uma lista de imagens, contendo o gradiente na direção X dos frames contidos em frames_list

gradient_y_list uma lista de imagens, contendo o gradiente na direção Y dos frames contidos em frames_list

Definition at line 280 of file image_processing.py.

3.1.2.10 optical_flow()

def image_processing.optical_flow (

frames_list )

Esta função recebe uma lista com frames empilhados e retorna lista contendo os frames com seus fluxos ópticos
na direção X e Y.
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Parameters

frames_list lista contendo uma sequência de frames

Multiple return:

Parameters

opt_x_frames uma lista de imagens, contendo o fluxo óptico na direção X, para cada frame

opt_y_frames uma lista de imagens, contendo o fluxo óptico na direção Y, para cada frame

Definition at line 297 of file image_processing.py.

3.2 utils Namespace Reference

Implementa funções de uso geral.

Functions

• def get_weizmann_filepaths ()

Obtém um dicionário de dicionários referentes ao dataset Weizmann como descrito em get_filepaths.
• def get_kth_filepaths ()

Obtém um dicionário de dicionários referentes ao dataset KTH como descrito em get_filepaths.
• def create_names_list (path, action)

Obtém a lista dos nomes das pessoas que executam as ações de um dataset específico.
• def create_actions_list (path, person)

Obtém a lista de ações referentes a um dataset específico.
• def get_filepaths (path, names_list, actions_list)

Obtém os caminhos para os arquivos de video de um dataset específico.
• def create_actions_regex_dict (name, actions_list)

Cria um dicionário de regex para buscar os nomes dos arquivos desejados.
• def get_person_filepaths (path, actions_regex_dict)

Obtém os caminhos dos arquivos a partir do regex_dict recebido.
• def load_dataset (dataset)

Lê os arquivos txt relacionados aos conjuntos de dados de treino e de teste e os retorna em uma namedtuple.
• def make_dataframe_from_filepath (txt_filepath, column_header)

Monta um objeto pandas.DataFrame a partir de um arquivo txt.
• def make_train_test_sets (dataset, filepaths, test_people)

Escreve arquivos txt contendo os nomes dos videos e suas respectivas classes.

3.2.1 Detailed Description

Implementa funções de uso geral.

Author

Daniel Kim & Igor Nakamura

Date

Date: 2020-04-17
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3.2.2 Function Documentation

3.2.2.1 get_weizmann_filepaths()

def utils.get_weizmann_filepaths ( )

Obtém um dicionário de dicionários referentes ao dataset Weizmann como descrito em get_filepaths.

Returns

Um dicionário de dicionários

Definition at line 30 of file utils.py.

Here is the call graph for this function:

utils.get_weizmann
_filepaths

utils.create_names_list

utils.create_actions_list

utils.get_filepaths

utils.create_actions
_regex_dict

utils.get_person_filepaths

3.2.2.2 get_kth_filepaths()

def utils.get_kth_filepaths ( )

Obtém um dicionário de dicionários referentes ao dataset KTH como descrito em get_filepaths.

Returns

Um dicionário de dicionários

Definition at line 43 of file utils.py.

Here is the call graph for this function:

utils.get_kth_filepaths

utils.create_names_list

utils.create_actions_list

utils.get_filepaths

utils.create_actions
_regex_dict

utils.get_person_filepaths

Generated by Doxygen



3.2 utils Namespace Reference 13

3.2.2.3 create_names_list()

def utils.create_names_list (

path,

action )

Obtém a lista dos nomes das pessoas que executam as ações de um dataset específico.

Parameters

path caminho para para a pasta desejada. Ex: 'Weizmann/' ou 'KTH/'

action nome da ação. Ex: 'bend' ou 'handclapping_d4_uncomp'

Returns

names_list: lista dos nomes das pessoas de um dataset. Como todas as pessoas executam o mesmo
conjunto de ações, essa variável contêm todos os nomes das pessoas do dataset.

Examples

>>> names_list = [’daria’, ’shahar’, ’lena’, ’lyova’, etc]
>>> names_list = [’person01’, ’person02’, ’person03’, etc]

Definition at line 68 of file utils.py.

Here is the caller graph for this function:

utils.create_names_list

utils.get_weizmann
_filepaths

utils.get_kth_filepaths

3.2.2.4 create_actions_list()

def utils.create_actions_list (

path,

person )

Obtém a lista de ações referentes a um dataset específico.
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Parameters

path caminho para para a pasta desejada. Ex: 'Weizmann/' ou 'KTH/'

person pessoa que executa a ação. Ex: 'daria' ou 'person01'

Returns

actions_list: lista de ações referentes a uma pessoa do dataset. Como uma única pessoa executa todas as
ações do dataset, essa variável contêm todas as ações do dataset.

Examples

>>> actions_list = [’bend’, ’wave1’, ’wave2’, ’walk’, ’skip’, etc]
>>> actions_list = [’handclapping_d4_uncomp’, ’boxing_d3_uncomp’, etc]

Definition at line 91 of file utils.py.

Here is the caller graph for this function:

utils.create_actions_list

utils.get_weizmann
_filepaths

utils.get_kth_filepaths

3.2.2.5 get_filepaths()

def utils.get_filepaths (

path,

names_list,

actions_list )

Obtém os caminhos para os arquivos de video de um dataset específico.

Parameters

path caminho para para a pasta desejada. Ex: 'Weizmann/' ou 'KTH/'

names_list lista com os nomes das pessoas que executam a ação. Ex: 'daria' para Weizmann e
'person01'para KTH

actions_list lista com as ações. Ex: 'bend', 'walk', etc para Weizmann e 'walking_d1_uncomp',
'person23_boxing_d2_uncomp' para KTH
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Returns

filepaths: dicionário de dicionários cujos 'keys' do dicionário mais externo são os nomes das pessoas. Os
'keys' dos dicionários mais internos são as ações associadas a uma pessoa específica. Por fim, os 'values'
do dicionário são o caminho completo para o arquivo de vídeo.

Examples

>>> print(filepaths[’daria’][’bend’])
’Weizmann/daria_bend.avi’
>>> print(filepaths[’person01’][’boxing_d1_uncomp’])
’KTH/person01_boxing_d1_uncomp’

Definition at line 120 of file utils.py.

Here is the call graph for this function:

utils.get_filepaths

utils.create_actions
_regex_dict

utils.get_person_filepaths

Here is the caller graph for this function:

utils.get_filepaths

utils.get_weizmann
_filepaths

utils.get_kth_filepaths

3.2.2.6 create_actions_regex_dict()

def utils.create_actions_regex_dict (

name,

actions_list )

Cria um dicionário de regex para buscar os nomes dos arquivos desejados.
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Parameters

name nome de uma pessoa. Ex: 'daria' ou 'person01'

actions_list lista de ações. Já descrito na função get_filepaths

Returns

actions_regex_dict: dicionário cujos 'keys' são as ações contidas em actions_list e cujos 'values' são regex
que serão usados para procurar o nome do arquivo de vídeo

Examples

>>> print(actions_regex_dict[’bend’])
r’daria_bend*’
>>> print(actions_regex_dict[’running_d3_uncomp’])
r’person25_running_d3_uncomp*’

Definition at line 149 of file utils.py.

Here is the caller graph for this function:

utils.create_actions
_regex_dict utils.get_filepaths

utils.get_weizmann
_filepaths

utils.get_kth_filepaths

3.2.2.7 get_person_filepaths()

def utils.get_person_filepaths (

path,

actions_regex_dict )

Obtém os caminhos dos arquivos a partir do regex_dict recebido.

Parameters

path caminho para para a pasta desejada. Ex: 'Weizmann/' ou 'KTH/'

actions_regex_dict idém ao descrito em 'create_actions_regex_dict'

Returns

filepaths: dicionário cujos 'keys' são as ações e cujos 'values' são os caminhos dos arquivos de vídeo con-
tendo as ações de uma pessoa específica
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Examples

>>> filepaths[’bend’] = ’Weizmann/daria_bend.avi’
>>> filepaths[’boxing_d1_uncomp’] = ’KTH/person01_boxing_d1_uncomp’

Definition at line 171 of file utils.py.

Here is the caller graph for this function:

utils.get_person_filepaths utils.get_filepaths

utils.get_weizmann
_filepaths

utils.get_kth_filepaths

3.2.2.8 load_dataset()

def utils.load_dataset (

dataset )

Lê os arquivos txt relacionados aos conjuntos de dados de treino e de teste e os retorna em uma namedtuple.

Parameters

dataset nome do dataset. Ex: 'weizmann' ou 'kth'

Returns

Uma namedtuple cujos campos são X_train, Y_train, X_test e Y_test. Os valores dos campos iniciados com
X e com Y são, respectivamente, dataframes contendo os caminhos para os arquivos de vídeo e as suas
respectivas classes.

Definition at line 190 of file utils.py.

Here is the call graph for this function:

utils.load_dataset utils.make_dataframe
_from_filepath
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3.2.2.9 make_dataframe_from_filepath()

def utils.make_dataframe_from_filepath (

txt_filepath,

column_header )

Monta um objeto pandas.DataFrame a partir de um arquivo txt.

Parameters

txt_file caminho para o arquivo txt

column_header cabeçalho da coluna do dataframe

Returns

Um objeto pandas.DataFrame com os dados do arquivo txt e cabeçalho segundo o argumento column_header

Definition at line 211 of file utils.py.

Here is the caller graph for this function:

utils.make_dataframe
_from_filepath utils.load_dataset

3.2.2.10 make_train_test_sets()

def utils.make_train_test_sets (

dataset,

filepaths,

test_people )

Escreve arquivos txt contendo os nomes dos videos e suas respectivas classes.

Parameters

dataset nome do dataset. Ex: 'weizmann' ou 'kth'
filepaths dicionário no formato daquele retornado pelo método get_filepaths

test_people lista de strings contendo os nomes das pessoas que farão parte do conjunto de testes. Ex:
['denis'], ['person10', 'person11']

Definition at line 230 of file utils.py.
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Chapter 4

File Documentation

4.1 src/image_processing/image_processing.py File Reference

Namespaces

• image_processing

Implementa funções de processamento de imagens.

Functions

• def image_processing.count_frames (video_cap)

Conta a quantidade de frames de um video.

• def image_processing.show_frames (video_cap)

Mostra o conteúdo de um conjunto de frames ao usuário.

• def image_processing.stack_frames (frames_list, frames_per_stack)

Agrupa os frames de um vídeo em listas que contém uma quantidade de "frames_per_stack" de frames.

• def image_processing.scaling (frames_list, scale)

Essa função realiza reduz a escala dos frames por um fator determinado.

• def image_processing.redim_weizmann (weiz_frames_list)

Essa função redimensiona os frames da base Weizmann, para que possua uma proporção altura/largura = 1.33,
igual aos frames da base KTH.

• def image_processing.video2list (video_cap)

Essa função converte um objeto de vídeo para uma lista de frames.

• def image_processing.foreground_extraction (frames_list, lr, thr, hist_len)

Essa função realiza a extração do plano frontal de um vídeo, e retorna uma lista de imagens correspondendo ao
frames do mesmo.

• def image_processing.grayscale (frames_list)

Esta função recebe uma lista de frames e retorna uma lista contendo os frames em tons de cinza.

• def image_processing.compute_gradient (frames_list)

Esta função recebe uma lista com frames e retorna uma lista contendo os frames com seus gradientes na direção X
e Y.

• def image_processing.optical_flow (frames_list)

Esta função recebe uma lista com frames empilhados e retorna lista contendo os frames com seus fluxos ópticos na
direção X e Y.
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4.2 src/utils/utils.py File Reference

Namespaces

• utils

Implementa funções de uso geral.

Functions

• def utils.get_weizmann_filepaths ()

Obtém um dicionário de dicionários referentes ao dataset Weizmann como descrito em get_filepaths.

• def utils.get_kth_filepaths ()

Obtém um dicionário de dicionários referentes ao dataset KTH como descrito em get_filepaths.

• def utils.create_names_list (path, action)

Obtém a lista dos nomes das pessoas que executam as ações de um dataset específico.

• def utils.create_actions_list (path, person)

Obtém a lista de ações referentes a um dataset específico.

• def utils.get_filepaths (path, names_list, actions_list)

Obtém os caminhos para os arquivos de video de um dataset específico.

• def utils.create_actions_regex_dict (name, actions_list)

Cria um dicionário de regex para buscar os nomes dos arquivos desejados.

• def utils.get_person_filepaths (path, actions_regex_dict)

Obtém os caminhos dos arquivos a partir do regex_dict recebido.

• def utils.load_dataset (dataset)

Lê os arquivos txt relacionados aos conjuntos de dados de treino e de teste e os retorna em uma namedtuple.

• def utils.make_dataframe_from_filepath (txt_filepath, column_header)

Monta um objeto pandas.DataFrame a partir de um arquivo txt.

• def utils.make_train_test_sets (dataset, filepaths, test_people)

Escreve arquivos txt contendo os nomes dos videos e suas respectivas classes.
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